Skip to main content
Log in

Ultra-broadband and high-efficiency terahertz reflective metamaterials polarization converter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper presents an ultra-broadband and high-efficiency terahertz (THz) reflective metamaterials polarization converter (PC). It consists of the gold (Au) pattern layer, the dielectric layer inlaid with an Au frame and the Au substrate layer. Based on the full vector finite element method, the polarization conversion properties, physical mechanism and the effects of device parameters are studied theoretically. The results show that the PC can realize linear and circular polarization conversion within the range of center frequency 7.5 THz and bandwidth 5.0 THz, and the polarization conversion rate (PCR) is greater than 99%. They are clearly superior to what has been reported. Meanwhile, it can maintain good polarization conversion properties when the incident angle of THz wave is less than 30°. The proposed PC has potential application prospects in THz polarization imaging and communication fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. X. Zheng, Z. Xiao, X. Ling, Plasmonics 13, 287–291 (2017). https://doi.org/10.1007/s11468-017-0512-6

    Article  Google Scholar 

  2. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Nat. Photonics 8, 605–609 (2014). https://doi.org/10.1038/nphoton.2014.139

    Article  ADS  Google Scholar 

  3. S. Niknam, M. Yazdi, S. BehboudiAmlashi, Sci. Rep. 9, 7516 (2019). https://doi.org/10.1038/s41598-019-44026-4

    Article  ADS  Google Scholar 

  4. G. Bansal, A. Marwaha, A. Singh, R. Bala, S. Marwaha, Curr. Nanosci. 14, 290–297 (2018). https://doi.org/10.2174/1573413714666180115120022

    Article  ADS  Google Scholar 

  5. F. Rutz, T. Hasek, M. Koch, H. Richter, U. Ewert, Appl. Phys. Lett. 89, 221911 (2006). https://doi.org/10.1063/1.2397564

    Article  ADS  Google Scholar 

  6. G. Duan, J. Schalch, X. Zhao, J. Zhang, R.D. Averitt, X. Zhang, Opt. Express 26, 2242–2251 (2018). https://doi.org/10.1364/OE.26.002242

    Article  ADS  Google Scholar 

  7. J.P. Martin, C.S. Joseph, R.H. Giles, J. Biomed. Opt. 21, 70502 (2016). https://doi.org/10.1117/1.JBO.21.7.070502

    Article  Google Scholar 

  8. M. Chen, Y.X. Wang, Z.R. Zhao, Front. Phys. 8, 216 (2020). https://doi.org/10.3389/fphy.2020.00216

    Article  Google Scholar 

  9. J.C. Zhao, Y.Z. Cheng, Z.Z. Cheng, IEEE Photonics J. 10, 4600210 (2018). https://doi.org/10.1109/jphot.2018.2792444

    Article  Google Scholar 

  10. J.C. Zi, Q. Xu, Q. Wang, C.X. Tian, Y.F. Li, X.X. Zhang, J.G. Han, W.L. Zhang, Opt. Commun. 416, 130–136 (2018). https://doi.org/10.1016/j.optcom.2018.02.012

    Article  ADS  Google Scholar 

  11. A.K. Fahad, C. Ruan, K. Chen, Electronics 8, 869 (2019). https://doi.org/10.3390/electronics8080869

    Article  Google Scholar 

  12. L. Yang, F. Fan, M. Chen, X.-Z. Zhang, S.-J. Chang, Acta Physica Sinica 65, 080702 (2016). https://doi.org/10.7498/aps.65.080702

    Article  Google Scholar 

  13. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Science 340, 1304–1307 (2013). https://doi.org/10.1126/science.1235399

    Article  ADS  Google Scholar 

  14. H. Sun, L. Wang, Y.X. Zhang, S.X. Liang, J.G. Han, F. Lan, X.L. Zhou, Z.Q. Yang, Chin. Opt. Lett. 17, 041602 (2019). https://doi.org/10.3788/col201917.041602

    Article  ADS  Google Scholar 

  15. D.W. Yu, Y.F. Dong, Y.D. Ruan, G.C. Li, G.S. Li, H.M. Ma, S. Deng, Z.P. Liu, Crystals 11, 1116 (2021). https://doi.org/10.3390/cryst11091116

    Article  Google Scholar 

  16. M.Q. Zou, M.Y. Su, H. Yu, Opt. Mater. 107, 110062 (2020). https://doi.org/10.1016/j.optmat.2020.110062

    Article  Google Scholar 

  17. J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, Z. Wang, Opt. Quant. Electron. 48, 111 (2016). https://doi.org/10.1007/s11082-016-0407-3

    Article  Google Scholar 

  18. X.F. Zang, S.J. Liu, Q.Q. Cheng, J.Y. Xie, Y.M. Zhu, Y.J. Wang, J. Opt. 19, 115103 (2017). https://doi.org/10.1088/2040-8986/aa8b90

    Article  ADS  Google Scholar 

  19. J.G. Zhang, J.P. Tian, S.Y. Xiao, L. Li, IEEE Access 8, 46505–46517 (2020). https://doi.org/10.1109/access.2020.2979021

    Article  Google Scholar 

  20. R.M.H. Bilal, M.A. Baqir, P.K. Choudhury, M.M. Ali, A.A. Rahim, Result Phys. 19, 103358 (2020). https://doi.org/10.1016/j.rinp.2020.103358

    Article  Google Scholar 

  21. Y.Z. Hou, C. Zhang, C.R. Wang, IEEE Access 8, 140303–140309 (2020). https://doi.org/10.1109/access.2020.3007838

    Article  Google Scholar 

  22. H.F. Zhang, L. Zeng, G.B. Liu, T. Huang, IEEE Access 7, 158634–158642 (2019). https://doi.org/10.1109/access.2019.2950847

    Article  Google Scholar 

  23. C.J. Gao, H.F. Zhang, Ann. Phys. 534, 2200108 (2022). https://doi.org/10.1002/andp.202200108

    Article  Google Scholar 

  24. C.H. Yang, Q.G. Gao, L.L. Dai, Y.L. Zhang, H.Y. Zhang, Y.P. Zhang, Opt. Mater. Express 10, 2289–2303 (2020). https://doi.org/10.1364/ome.404244

    Article  ADS  Google Scholar 

  25. X.F. Jing, X.C. Gui, P.W. Zhou, Z. Hong, J. Lightwave Technol. 36, 2322–2327 (2018). https://doi.org/10.1109/jlt.2018.2808339

    Article  ADS  Google Scholar 

  26. R. Xia, X.F. Jing, H.H. Zhu, W.M. Wang, Y. Tian, Z. Hong, Opt. Commun. 383, 310–315 (2017). https://doi.org/10.1016/j.optcom.2016.08.060

    Article  ADS  Google Scholar 

  27. G.Y. Xu, L. Gao, Y.Q. Chen, Y.Q. Ding, J. Wang, Y. Fang, X.Z. Wu, Y. Sun, Front. Mater. 9, 850020 (2022). https://doi.org/10.3389/fmats.2022.850020

    Article  Google Scholar 

  28. D.X. Yan, Q.Y. Feng, Z.W. Yuan, M. Meng, X.J. Li, G.H. Qiu, J.N. Li, Chin. Phys. B 31, 014211 (2022). https://doi.org/10.1088/1674-1056/ac05a7

    Article  ADS  Google Scholar 

  29. S.K. Ghosh, A. Chaudhuri, P. Pal, B. Rai, S. Das, S. Bhattacharyya, IEEE Sens. J. 22, 12820–12828 (2022). https://doi.org/10.1109/jsen.2022.3176381

    Article  ADS  Google Scholar 

  30. M. Sajjad, X.K. Kong, S.B. Liu, A. Ahmed, S.U. Rahman, Q. Wang, Phys. Lett. A 384, 126567 (2020). https://doi.org/10.1016/j.physleta.2020.126567

    Article  Google Scholar 

  31. J.F. Zhu, S.F. Li, L. Deng, C. Zhang, Y. Yang, H.B. Zhu, Opt. Mater. Express 8, 1164–1173 (2018). https://doi.org/10.1364/ome.8.001164

    Article  ADS  Google Scholar 

  32. Z.Y. Xiao, H.L. Zou, X.X. Zheng, X.Y. Ling, L. Wang, Opt. Quant. Electron. 49, 401 (2017). https://doi.org/10.1007/s11082-017-1235-9

    Article  Google Scholar 

  33. F.Y. Yu, J.B. Zhu, X.B. Shen, Opt. Mater. 123, 111745 (2022). https://doi.org/10.1016/j.optmat.2021.111745

    Article  Google Scholar 

  34. K. Liao, S.N. Sun, X.Y. Zheng, X.X. Shao, X.K. Kong, S.B. Liu, Chin. Phys. B 31, 024211 (2022). https://doi.org/10.1088/1674-1056/ac1fdd

    Article  ADS  Google Scholar 

  35. Y.-N. Fu, X.-Q. Zhang, G.-Z. Zhao, Y.-H. Li, J.-Y. Yu, Acta Physica Sinica 66, 180701 (2017). https://doi.org/10.7498/aps.66.180701

    Article  Google Scholar 

  36. H.T. Du, M.Z. Jiang, L.Z. Zeng, L.H. Zhang, W.L. Xu, X.W. Zhang, F.R. Hu, Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac4f5b

    Article  Google Scholar 

  37. R. Lin, F.K. Lu, X.L. He, Z.L. Jiang, C. Liu, S.Y. Wang, Y. Kong, Opt. Express 29, 30357–30370 (2021). https://doi.org/10.1364/oe.438256

    Article  ADS  Google Scholar 

  38. Z.T. Cui, Z.Y. Xiao, M.M. Chen, F. Lv, Q.D. Xu, J. Electron. Mater. 50, 4207–4214 (2021). https://doi.org/10.1007/s11664-021-08944-2

    Article  ADS  Google Scholar 

  39. Y.H. Zhang, W.M. Luan, X.N. Yan, X.Z. Gao, S.F. Zhang, Z.M. Jin, G.H. Ma, J.Q. Yao, Plasmonics (2022). https://doi.org/10.1007/s11468-022-01625-8

    Article  Google Scholar 

  40. H.L. Zou, Z.Y. Xiao, W. Li, C. Li, Appl. Phys. A-Mater. Sci. Process. 124, 322 (2018). https://doi.org/10.1007/s00339-018-1740-0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation Funded Project (2019M661013), the Key Technologies R&D Program of Tianjin (20YDTPJC01090, 22YDTPJC00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Chen, T., Wang, S. et al. Ultra-broadband and high-efficiency terahertz reflective metamaterials polarization converter. Appl. Phys. A 129, 610 (2023). https://doi.org/10.1007/s00339-023-06877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06877-7

Keywords

Navigation