Skip to main content
Log in

Simulation methods and transmission characteristics of dielectric-coated metallic waveguides from mid-infrared to millimeter waves

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The transmission characteristics of dielectric-coated metallic hollow waveguides (DMHW) are simulated by means of Ray Model, Transmission Line Model, and Finite Element Analysis methods. By comparing the simulation results in mid- and far-infrared, terahertz and millimeter wavelength bands, the range of application and deviation analysis of three simulation methods are presented. Limitations of each simulation model are summarized. The optimization methods of structural parameters for the DMHW in various wavelength bands are provided. The loss properties of the DMHW were measured in 2–10 μm infrared wavelength band, 140–220 GHz millimeter wavelength band, and 2.5THz and 4.3THz frequencies. The measured data agree with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Hongo, K. Morosawa, K. Matsumoto et al., Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing. Appl. Opt. 31(24), 5114–5120 (1992)

    Article  ADS  Google Scholar 

  2. Y.W. Shi, Z.Y. Zhou, X.L. Tang et al., Design and fabrication of infrared hollow fibers for spectroscopic gas sensing. Journal of Infrared and Millimeter Waves 28(2), 111–114 (1992)

    Article  Google Scholar 

  3. Y.W. Shi, X.S. Zhu, Y. Matsuura et al., Flexible bundled hollow fiber used in the transmission of thermal infrared image. Journal of lnfrared and Millimeter Waves 27(1), 12–15 (2008)

    Article  Google Scholar 

  4. X. Zeng, B.H. Liu, Y.J. He et al., Fabrication and characterization of AgI/Ag hollow fibers for near-infrared lasers. Opt. Laser Technol. 49, 209–212 (2013)

    Article  ADS  Google Scholar 

  5. S. Atakaramians, A. Stefani, H.S. Li et al., Fiber-drawn metamaterial for THz waveguiding and imaging. Journal of Infrared Millimeter and Terahertz Waves 38(9), 1162–1178 (2017)

    Article  Google Scholar 

  6. E. Yokoyama, S. Kakino, Y. Matsuura, Raman imaging of carious lesions using a hollow optical fiber probe. Appl. Opt. 47(23), 4227–4230 (2008)

    Article  ADS  Google Scholar 

  7. U. Gal, J. Harrington, M. Ben-David et al., Coherent hollow-core waveguide bundles for thermal imaging. Appl. Opt. 49(25), 4700–4709 (2010)

    Article  ADS  Google Scholar 

  8. Y. Wang, W.Y. Shi, Y. Matsuura et al., Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light. Optics Laser Technology 29(8), 455–461 (1998)

    Article  ADS  Google Scholar 

  9. W. Fang, P. Fei, N. Feng et al., Ka-band dielectric waveguide antenna array for millimeter wave active imaging system. Journal of Infrared Millimeter and Terahertz Waves 35(11), 962–973 (2014)

    Article  Google Scholar 

  10. Y. Matsuura, M. Saito, M. Miyagi et al., Loss characteristics of circular hollow waveguides for incoherent infrared light. Journal Optical Social American 6(3), 423–427 (1989)

    Article  ADS  Google Scholar 

  11. M. Miyagi, Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment. J. Lightwave Technol. 3(2), 303–307 (1985)

    Article  ADS  Google Scholar 

  12. J.E. Melzer, J.A. Harrington, Silver/cyclic olefin copolymer hollow glass waveguides for infrared laser delivery. Applied Optical 54(32), 9548–9553 (2015)

    Article  ADS  Google Scholar 

  13. M. Miyagi, S. Kawakami, Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2(2), 116–126 (1984)

    Article  ADS  Google Scholar 

  14. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(5), 302–307 (1966)

    ADS  MATH  Google Scholar 

  15. J.F. Lee, R. Lee, A. Cangellaris, Time-domain finite-element methods. IEEE Trans. Antennas Propag. 45(3), 430–441 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  16. P. Monk, A mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal. 28(6), 1610–1634 (1991)

    Article  MathSciNet  Google Scholar 

  17. D.W. Vogt, R. Leonhardt, 3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure. Journal of Infrared Millimeter and Terahertz Waves 37(11), 1086–1095 (2016)

    Article  Google Scholar 

  18. P.P. Silvester, Finite-element solution of homogeneous-waveguide problems. Alta Frequenza 38, 313–317 (1969)

    Google Scholar 

  19. Y.W. Shi, K. Ito, Y. Matsuura et al., Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared. Optical Letter 30(21), 2867–2869 (2005)

    Article  ADS  Google Scholar 

  20. M.A. Ordal, L.L. Long, R.J. Bell et al., Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optical 22(7), 1099–1119 (1983)

    Article  ADS  Google Scholar 

  21. Y.W. Shi, Y. Abe, Y. Matsuura et al., Low loss smart hollow waveguides with new polymer coating material. Optics Laser Technology 31(2), 135–140 (1999)

    Article  ADS  Google Scholar 

  22. P.D. Cunningham, N.N. Valdes, F.A. Vallejo et al., Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109(4), 043505–043505 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Defense Science and Technology Innovation Special Zone; National Natural Science Foundation of China (61975034); Natural Science Foundation of Shanghai (19ZR1405000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., He, M., Zhang, X. et al. Simulation methods and transmission characteristics of dielectric-coated metallic waveguides from mid-infrared to millimeter waves. Appl. Phys. B 127, 99 (2021). https://doi.org/10.1007/s00340-021-07644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07644-3

Navigation