Skip to main content
Log in

Color image encryption using minimax differential evolution-based 7D hyper-chaotic map

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Hyperchaotic maps are generally used in the encryption to generate the secret keys. The number of hyperchaotic maps has been implemented so far. These maps involve a large number of state and control parameters. The major concern is the estimation of these parameters. Because the estimation requires extensive computational search. In this paper, a 7D hyperchaotic map is used to produce the secret keys for image encryption. As this hyperchaotic map require a large number of initial parameters, the manual estimation is computationally extensive. Therefore, minimax differential evolution is utilized to provide the optimal parameters to the hyperchaotic map. The fitness of the parameters is evaluated using correlation coefficient and entropy. The secrets keys are then produced by the proposed hyperchaotic map. These keys are further used to perform the diffusion operation on the input image to generate the encrypted images. Extensive experiments are conducted to investigate the performance of the proposed approach considering the well-known measures. The comparative results show that the proposed approach performs significantly better as compared to the competitive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Vidhya, M. Brindha, A chaos based image encryption algorithm using rubik’s cube and prime factorization process (cierpf). J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2019.12.014

    Article  Google Scholar 

  2. W. Liu, K. Sun, C. Zhu, A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016)

    Google Scholar 

  3. J.-X. Chen, Z.-L. Zhu, C. Fu, H. Yu, An improved permutation-diffusion type image cipher with a chaotic orbit perturbing mechanism. Opt. Express 21(23), 27873–27890 (2013)

    ADS  Google Scholar 

  4. G.-D. Ye, X.-L. Huang, L.Y. Zhang, Z.-X. Wang, A self-cited pixel summation based image encryption algorithm. Chin. Phys. B 26(1), 010501 (2017)

    ADS  Google Scholar 

  5. A. Kanso, M. Ghebleh, A novel image encryption algorithm based on a 3d chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  6. N.R. Zhou, T.X. Hua, L.H. Gong, D.J. Pei, Q.H. Liao, Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  7. G. Ye, K. Jiao, C. Pan, X. Huang, An effective framework for chaotic image encryption based on 3d logistic map. Secur. Commun. Netw. 2018, 1–11 (2018)

    Google Scholar 

  8. Z. Azimi, S. Ahadpour, Color image encryption based on DNA encoding and pair coupled chaotic maps. Multimed. Tools Appl. 79(3), 1727–1744 (2020)

    Google Scholar 

  9. D. Singh, M. Kaur, H. Singh, Remote sensing image fusion using fuzzy logic and gyrator transform. Remote Sens. Lett. 9(10), 942–951 (2018)

    Google Scholar 

  10. G. Qi, H. Wang, M. Haner, C. Weng, S. Chen, Z. Zhu, Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation. CAAI Trans. Intell. Technol. 4(2), 80–91 (2019)

    Google Scholar 

  11. D. Singh, V. Kumar, M. Kaur, Image dehazing using window-based integrated means filter. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08286-6

    Article  Google Scholar 

  12. Y. Tingting, W. Junqian, W. Lintai, X. Yong, Three-stage network for age estimation. CAAI Trans. Intell. Technol. 4(2), 122–126 (2019)

    Google Scholar 

  13. M. Kaur, D. Singh, V. Kumar, K. Sun, Color image dehazing using gradient channel prior and guided l0 filter. Inf. Sci. 521, 326–342 (2020). https://doi.org/10.1016/j.ins.2020.02.048, http://www.sciencedirect.com/science/article/pii/S0020025520301316. Accessed 23 Mar 2020

  14. Y. Pathak, P.K. Shukla, A. Tiwari, S. Stalin, S. Singh, P.K. Shukla, Deep transfer learning based classification model for covid-19 disease. IRBM (2020). https://doi.org/10.1016/j.irbm.2020.05.003

    Article  Google Scholar 

  15. M. Kaur, D. Singh, Fusion of medical images using deep belief networks. Clust. Comput. 23, 1439–1453 (2020). https://doi.org/10.1007/s10586-019-02999-x

    Article  Google Scholar 

  16. P.K. Shukla, P.K. Shukla, P. Sharma, P. Rawat, J. Samar, R. Moriwal, M. Kaur, Efficient prediction of drug-drug interaction using deep learning models. IET Syst. Biol. 14(4), 211–216 (2020). https://doi.org/10.1049/iet-syb.2019.0116

    Article  Google Scholar 

  17. D. Singh, V. Kumar, A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26(5), 1395–1413 (2019)

    Google Scholar 

  18. D. Singh, V. Kumar, Dehazing of outdoor images using notch based integral guided filter. Multimed. Tools Appl. 77(20), 27363–27386 (2018)

    Google Scholar 

  19. H.S. Basavegowda, G. Dagnew, Deep learning approach for microarray cancer data classification. CAAI Trans. Intell. Technol. 5(1), 22–33 (2020)

    Google Scholar 

  20. D. Singh, V. Kumar, M. Kaur, Single image dehazing using gradient channel prior. Appl. Intell. 49(12), 4276–4293 (2019)

    Google Scholar 

  21. A. Pisarchik, M. Zanin, Image encryption with chaotically coupled chaotic maps. Phys. D 237(20), 2638–2648 (2008)

    MathSciNet  MATH  Google Scholar 

  22. N.K. Pareek, V. Patidar, K.K. Sud, Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Google Scholar 

  23. H. Kwok, W.K. Tang, A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32(4), 1518–1529 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  24. J. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(06), 1259–1284 (1998)

    MathSciNet  MATH  Google Scholar 

  25. G. Chen, Y. Mao, C.K. Chui, A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Z.-H. Guan, F. Huang, W. Guan, Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)

    ADS  MATH  Google Scholar 

  27. S. Lian, Efficient image or video encryption based on spatiotemporal chaos system. Chaos Solitons Fractals 40(5), 2509–2519 (2009)

    ADS  MATH  Google Scholar 

  28. Q. Zhang, L. Guo, X. Wei, Image encryption using dna addition combining with chaotic maps. Math. Comput. Modell. 52(11–12), 2028–2035 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Y. Mao, G. Chen, S. Lian, A novel fast image encryption scheme based on 3d chaotic baker maps. Int. J. Bifurc. Chaos 14(10), 3613–3624 (2004)

    MathSciNet  MATH  Google Scholar 

  30. X. Wang, D. Luan, A novel image encryption algorithm using chaos and reversible cellular automata. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3075–3085 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  31. L. Liu, S. Miao, A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus 5(1), 289 (2016)

    Google Scholar 

  32. Y. Wu, J.P. Noonan, G. Yang, H. Jin, Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014 (2012)

    ADS  Google Scholar 

  33. G. Ye, X. Huang, A secure image encryption algorithm based on chaotic maps and sha-3. Secur. Commun. Netw. 9(13), 2015–2023 (2016)

    Google Scholar 

  34. G. Ye, X. Huang, An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neurocomputing 251, 45–53 (2017)

    Google Scholar 

  35. G. Ye, C. Pan, X. Huang, Z. Zhao, J. He, A chaotic image encryption algorithm based on information entropy. Int. J. Bifurc. Chaos 28(01), 1850010 (2018)

    MathSciNet  MATH  Google Scholar 

  36. E. Solak, C. Çokal, O.T. Yildiz, T. BiyikoĞlu, Cryptanalysis of fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(05), 1405–1413 (2010)

    MathSciNet  MATH  Google Scholar 

  37. E.Y. Xie, C. Li, S. Yu, J. Lü, On the cryptanalysis of fridrich’s chaotic image encryption scheme. Sig. Process. 132, 150–154 (2017)

    Google Scholar 

  38. Z. Hua, Y. Zhou, H. Huang, Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019)

    Google Scholar 

  39. A. Benlashram, M. Al-Ghamdi, R. AlTalhi, P. K. Laabidi, A novel approach of image encryption using pixel shuffling and 3d chaotic map. In: Journal of Physics: Conference Series, Vol. 1447, IOP Publishing, 2020, p. 012009

  40. J. Lin, K. Zhao, X. Cai, D. Li, Z. Wang, An image encryption method based on logistic chaotic mapping and dna coding. In: MIPPR 2019: remote sensing image processing, geographic information systems, and other applications, Vol. 11432, International Society for Optics and Photonics, 2020, p. 114321L

  41. C. Li, F. Zhao, C. Liu, L. Lei, J. Zhang, A hyperchaotic color image encryption algorithm and security analysis. Secur. Commun. Netw. 2019, 1–8 (2019)

    Google Scholar 

  42. J. Wu, J. Shi, T. Li, A novel image encryption approach based on a hyperchaotic system, pixel-level filtering with variable kernels, and dna-level diffusion. Entropy 22(1), 5 (2020)

    ADS  Google Scholar 

  43. L. You, E. Yang, G. Wang, A novel parallel image encryption algorithm based on hybrid chaotic maps with opencl implementation. Soft Comput. 24, 12413–12427 (2020)

    Google Scholar 

  44. R. Li, Fingerprint-related chaotic image encryption scheme based on blockchain framework. Multimed. Tools Appl. (2020). https://doi.org/10.1007/s11042-020-08802-z

    Article  Google Scholar 

  45. M. Khan, F. Masood, A. Alghafis, M. Amin, S.I.B. Naqvi, A novel image encryption technique using hybrid method of discrete dynamical chaotic maps and brownian motion. PLoS One 14(12), e0225031 (2019)

    Google Scholar 

  46. L. Liu, J. Hu, H. Li, J. Li, Z. He, C. Han, Parameter estimation of a class one-dimensional discrete chaotic system. Discr. Dyn. Nat. Soc. 2011, 1–9 (2011)

    MathSciNet  Google Scholar 

  47. C. Li, A new method of determining chaos-parameter-region for the tent map. Chaos Solitons Fractals 21(4), 863–867 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Q. Yang, D. Zhu, L. Yang, A new 7d hyperchaotic system with five positive lyapunov exponents coined. Int. J. Bifurc. Chaos 28(05), 1850057 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Q. Yang, W.M. Osman, C. Chen, A new 6d hyperchaotic system with four positive lyapunov exponents coined. Int. J. Bifurc. Chaos 25(04), 1550060 (2015)

    MathSciNet  MATH  Google Scholar 

  50. X. Qiu, J.-X. Xu, Y. Xu, K.C. Tan, A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans. Cybern. 48(5), 1355–1368 (2017)

    Google Scholar 

  51. D. Singh, V. Kumar, Vaishali, M. Kaur, Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 39, 1–11 (2020). https://doi.org/10.1007/s10096-020-03901-z

    Article  Google Scholar 

  52. H.S. Pannu, D. Singh, A.K. Malhi, Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput. Appl. 31, 2195–2205 (2019)

    Google Scholar 

  53. H.S. Pannu, D. Singh, A.K. Malhi, Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection, CLEAN-Soil, Air. Water 46(5), 1700162 (2018)

    ADS  Google Scholar 

  54. M. Kaur, H.K. Gianey, D. Singh, M. Sabharwal, Multi-objective differential evolution based random forest for e-health applications. Mod. Phys. Lett. B 33(05), 1950022 (2019)

    ADS  Google Scholar 

  55. A.H. Abdullah, R. Enayatifar, M. Lee, A hybrid genetic algorithm and chaotic function model for image encryption. AEU-Int. J. Electron. Commun. 66(10), 806–816 (2012)

    Google Scholar 

  56. N. Sreelaja, G.V. Pai, Stream cipher for binary image encryption using ant colony optimization based key generation. Appl. Soft Comput. 12(9), 2879–2895 (2012)

    Google Scholar 

  57. R. Enayatifar, A.H. Abdullah, M. Lee, A weighted discrete imperialist competitive algorithm (wdica) combined with chaotic map for image encryption. Opt. Lasers Eng. 51(9), 1066–1077 (2013)

    Google Scholar 

  58. R. Enayatifar, A.H. Abdullah, I.F. Isnin, Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 56, 83–93 (2014)

    Google Scholar 

  59. K.M. Talarposhti, M.K. Jamei, A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map. Opt. Lasers Eng. 81, 21–34 (2016)

    Google Scholar 

  60. M. Kaur, V. Kumar, An efficient image encryption method based on improved lorenz chaotic system. Electron. Lett. 54(9), 562–564 (2018)

    ADS  Google Scholar 

  61. M. Kaur, V. Kumar, Fourier-mellin moment-based intertwining map for image encryption. Mod. Phys. Lett. B 32(9), 1850115 (2018)

    ADS  MathSciNet  Google Scholar 

  62. M. Kaur, V. Kumar, Color image encryption technique using differential evolution in nonsubsampled contourlet transform domain. IET Image Process. 12(7), 1273–1283 (2018)

    Google Scholar 

  63. B. Mondal, T. Mandal, A light weight secure image encryption scheme based on chaos& dna computing. J. King Saud Univ. Comput. Inf. Sci. 29, 499–504 (2016)

    Google Scholar 

  64. N. Rawat, B. Kim, R. Kumar, Fast digital image encryption based on compressive sensing using structurally random matrices and arnold transform technique. Optik Int. J. Light Electron Opt. 127(4), 2282–2286 (2016) (Elsevier, Switzerland)

    Google Scholar 

  65. Y. Zhang, B. Xu, N. Zhou, A novel image compression-encryption hybrid algorithm based on the analysis sparse representation. Opt. Commun. 392, 223–233 (2017)

    ADS  Google Scholar 

  66. T. Sivakumar, R. Venkatesan, A novel image encryption using calligraphy based scan method and random number. KSII Trans. Internet Inf. Syst. 9(6), 2317–2337 (2015)

    Google Scholar 

  67. F.E.A. El-Samie, H.E.H. Ahmed, I.F. Elashry, M.H. Shahieen, O.S. Faragallah, E.-S.M. El-Rabaie, S.A. Alshebeili, Image Encryption: a Communication Perspective (CRC Press, Boca Roton, 2013)

    Google Scholar 

  68. A. Bakhshandeh, Z. Eslami, An authenticated image encryption scheme based on chaotic maps and memory cellular automata. Opt. Lasers Eng. 51(6), 665–673 (2013)

    Google Scholar 

  69. A. Belazi, A.A.A. El-Latif, S. Belghith, A novel image encryption scheme based on substitution-permutation network and chaos. Sig. Process. 128, 155–170 (2016)

    Google Scholar 

  70. M. Ghebleh, A. Kanso, H. Noura, An image encryption scheme based on irregularly decimated chaotic maps. Sig. Process. Image Commun. 29(5), 618–627 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Singh, D. & Kumar, V. Color image encryption using minimax differential evolution-based 7D hyper-chaotic map. Appl. Phys. B 126, 147 (2020). https://doi.org/10.1007/s00340-020-07480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07480-x

Navigation