Skip to main content
Log in

Image dehazing using window-based integrated means filter

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image acquisition is generally susceptible to poor environmental conditions such as fog, smog, haze, etc. However, designing an efficient image dehazing technique is still an ill posed problem. Extensive review of the competitive haze removal approaches reveal that the texture preservation and computational speed are still a challenging issues. Therefore, in this paper, initially, a mask is utilized to decompose an input image into low and high frequency regions based on image gradient magnitude. Thereafter, a Gradient sensitive loss (GSL) is designed to obtain the depth information from an input hazy image. Thereafter, transmission map is refined by designing an efficient filter named as Window-based integrated means filter (WIMF). Finally, the restoration model is utilized to recover the hazy images. Experimental analysis reveals that the proposed dehazing technique achieves considerable results beyond the prototypes of the benchmarks. Additionally, the proposed technique outperforms the state-of-the-arts in single image dehazing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alajarmeh A, Salam R, Abdulrahim K, Marhusin M, Zaidan A, Zaidan B (2018) Real-time framework for image dehazing based on linear transmission and constant-time airlight estimation. Inform Sci 436–437:108–130. https://doi.org/10.1016/j.ins.2018.01.009. http://www.sciencedirect.com/science/article/pii/S0020025518300173

    Article  MathSciNet  Google Scholar 

  2. Bala J, Lakhwani K (2019) Performance evaluation of various desmogging techniques for single smoggy images. Modern Phys Lett B: 1950056

  3. Bouguelia M-R, Nowaczyk S, Santosh K, Verikas A (2018) Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int J Machine Learn Cybern 9(8):1307–1319

    Article  Google Scholar 

  4. Chen B-H, Huang S-C (2016) Edge collapse-based dehazing algorithm for visibility restoration in real scenes. J Disp Technol 12(9):964–970

    Article  Google Scholar 

  5. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  Google Scholar 

  6. Cosmin Ancuti CDV, Ancuti CO (2016) D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: IEEE international conference on image processing (ICIP), ICIP’16, pp 2226–2230

  7. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. Springer, pp 184–199

  8. Emberton S, Chittka L, Cavallaro A (2018) Underwater image and video dehazing with pure haze region segmentation. Comput Vision Image Understand 168:145–156. special Issue on Vision and Computational Photography and Graphics. https://doi.org/10.1016/j.cviu.2017.08.003. http://www.sciencedirect.com/science/article/pii/S1077314217301418

    Article  Google Scholar 

  9. Fattal R (2014) Dehazing using color-lines. ACM Trans Graphics (TOG) 34(1):13

    Article  Google Scholar 

  10. Ge G, Wei Z, Zhao J (2015) Fast single-image dehazing using linear transformation. Optik 126(21):3245–3252. https://doi.org/10.1016/j.ijleo.2015.07.138. http://www.sciencedirect.com/science/article/pii/S0030402615006907

    Article  Google Scholar 

  11. Gibson KB, Vo DT, Nguyen TQ (2012) An investigation of dehazing effects on image and video coding. IEEE Trans Image Process 21(2):662–673

    Article  MathSciNet  Google Scholar 

  12. Hautiere N, Tarel J-P, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereology 27(2):87–95

    Article  MathSciNet  Google Scholar 

  13. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  14. Hu H, Li B, Liu Q (2016) Removing mixture of gaussian and impulse noise by patch-based weighted means. J Sci Comput 67(1):103–129

    Article  MathSciNet  Google Scholar 

  15. Jiang Y, Sun C, Zhao Y, Yang L (2017) Image dehazing using adaptive bi-channel priors on superpixels. Comput Vision Image Understand 165:17–32. https://doi.org/10.1016/j.cviu.2017.10.014. http://www.sciencedirect.com/science/article/pii/S1077314217301777

    Article  Google Scholar 

  16. Jung S-W (2013) Enhancement of image and depth map using adaptive joint trilateral filter. IEEE Trans Circuits Syst Video Technol 23(2):258–269

    Article  Google Scholar 

  17. Kede Ma WL, Wang Z (2015) Perceptual evaluation of single image dehazing algorithms. In: Image processing, Proc. IEEE, Citeseer, pp 3600–3604

  18. Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528

    Article  Google Scholar 

  19. Kushwaha AKS, Srivastava R (2015) Framework for dynamic background modeling and shadow suppression for moving object segmentation in complex wavelet domain. Journal Electron Imaging 24(5):051005

    Article  Google Scholar 

  20. Li B, Liu Q, Xu J, Luo X (2011) A new method for removing mixed noises. Sci China Inform Sci 54(1):51–59

    Article  Google Scholar 

  21. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z (2017) Reside: a benchmark for single image dehazing, arXiv:1712.04143

  22. Li Z, Zheng J (2015) Edge-preserving decomposition-based single image haze removal. IEEE Trans Image Process 24(12):5432–5441

    Article  MathSciNet  Google Scholar 

  23. Ling Z, Fan G, Gong J, Wang Y, Lu X (2017) Perception oriented transmission estimation for high quality image dehazing. Neurocomputing 224:82–95. https://doi.org/10.1016/j.neucom.2016.10.050. http://www.sciencedirect.com/science/article/pii/S0925231216312917

    Article  Google Scholar 

  24. McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, p 1976.421

    Google Scholar 

  25. Nair D, Sankaran P (2018) Color image dehazing using surround filter and dark channel prior. J Visual Commun Image Representation 50:9–15. https://doi.org/10.1016/j.jvcir.2017.11.005. http://www.sciencedirect.com/science/article/pii/S1047320317302055

    Article  Google Scholar 

  26. Obaidullah SM, Bose A, Mukherjee H, Santosh K, Das N, Roy K (2018) Extreme learning machine for handwritten indic script identification in multiscript documents. J Electron Imaging 27(5):051214

    Article  Google Scholar 

  27. Qi M, Hao Q, Guan Q, Kong J, Zhang Y (2015) Image dehazing based on structure preserving. Optik 126(22):3400–3406. https://doi.org/10.1016/j.ijleo.2015.07.114. http://www.sciencedirect.com/science/article/pii/S003040261500666X

    Article  Google Scholar 

  28. Rong Z, Jun WL (2014) Improved wavelet transform algorithm for single image dehazing. Optik 125(13):3064–3066. https://doi.org/10.1016/j.ijleo.2013.12.077. http://www.sciencedirect.com/science/article/pii/S0030402614002022

    Article  Google Scholar 

  29. Saini R, Kumar P, Kaur B, Roy PP, Dogra DP, Santosh K (2018) Kinect sensor-based interaction monitoring system using the blstm neural network in healthcare. Int J Mach Learn Cybern: 1–12

  30. Shi L-F, Chen B-H, Huang S-C, Larin AO, Seredin OS, Kopylov AV, Kuo S-Y (2018) Removing haze particles from single image via exponential inference with support vector data description. IEEE Trans Multimed 20(9):2503–2512

    Article  Google Scholar 

  31. Shu Q, Wu C, Zhong Q, Liu RW (2019) Alternating minimization algorithm for hybrid regularized variational image dehazing. Optik 185:943–956. https://doi.org/10.1016/j.ijleo.2019.04.002. http://www.sciencedirect.com/science/article/pii/S0030402619304711

    Article  Google Scholar 

  32. Singh D, Kumar V (2018) Single image haze removal using integrated dark and bright channel prior. Modern Phys Lett B: 1850051

  33. Singh D, Kumar V (2019) Image dehazing using moore neighborhood-based gradient profile prior. Signal Process Image Commun 70:131–144

    Article  Google Scholar 

  34. Song Y, Li J, Wang X, Chen X (2017) Single image dehazing using ranking convolutional neural network. IEEE Trans Multimed

  35. Tarel J-P, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell Transp Syst Mag 4(2):6–20

    Article  Google Scholar 

  36. Tarel J-P, Hautiere N, Cord A, Gruyer D, Halmaoui H (2010) Improved visibility of road scene images under heterogeneous fog. In: Intelligent vehicles symposium (IV), 2010 IEEE, Citeseer, pp 478–485

  37. Ukil S, Ghosh S, Obaidullah SM, Santosh K, Roy K, Das N (2019) Improved word-level handwritten indic script identification by integrating small convolutional neural networks. Neural Comput Appl: 1–16

  38. Xia P, Liu X (2016) Image dehazing technique based on polarimetric spectral analysis. Optik 127(18):7350–7358. https://doi.org/10.1016/j.ijleo.2016.05.071.http://www.sciencedirect.com/science/article/pii/S0030402616305149

    Article  Google Scholar 

  39. Xu L, Zhao D, Yan Y, Kwong S, Chen J, Duan L-Y (2019) Iders: iterative dehazing method for single remote sensing image. Inform Sci 489:50–62. https://doi.org/10.1016/j.ins.2019.02.058. http://www.sciencedirect.com/science/article/pii/S0020025519301732

    Article  Google Scholar 

  40. Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21 (11):4544–4556

    Article  MathSciNet  Google Scholar 

  41. Zhao D, Xu L, Yan Y, Chen J, Duan L-Y (2019) Multi-scale optimal fusion model for single image dehazing. Signal Process Image Commun 74:253–265. https://doi.org/10.1016/j.image.2019.02.004. http://www.sciencedirect.com/science/article/pii/S0923596518308804

    Article  Google Scholar 

  42. Zuo W, Zhang L, Song C, Zhang D, Gao H (2014) Gradient histogram estimation and preservation for texture enhanced image denoising. IEEE Trans Image Process 23(6):2459–2472

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit Kaur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kumar, V. & Kaur, M. Image dehazing using window-based integrated means filter. Multimed Tools Appl 79, 34771–34793 (2020). https://doi.org/10.1007/s11042-019-08286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08286-6

Keywords

Navigation