Skip to main content
Log in

An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have developed a low-power, open-path, near-infrared (NIR) tunable diode laser sensor for the measurement of near ground-level concentrations of greenhouse gases. Here, we report on instrument design, characterization, and initial measurements of carbon dioxide concentrations during deployment to a thermokarst collapse scar bog near Fairbanks, AK (USA). The optics “launch-box” portion of the instrument couples radiation from an NIR, distributed feedback diode laser operating near 1572 nm with a visible laser for alignment purposes. The outgoing beam is directed through a 3.2-mm hole in a parabolic mirror and the launch-box is oriented using a two axis, altitude-azimuth telescope mount such that the beam strikes a retroreflector target at a set distance downfield. The beam then retraces the path back to the launch-box where the light is collected on the surface of the parabolic mirror and focused onto a multimode fiber that transfers the radiation to an InGaAs detector. Sweeps over a ~1.6 cm−1 spectral region were collected at a rate of 500 scans per second and were typically stored as 10 s sweep averages. These averaged sweeps could be individually spectrally fit for CO2 concentration or averaged into a single spectrum for fitting (after correction for slight frequency drift). Field data reported here was averaged for 2.5 min and was found to follow trends in diurnal cycles of CO2 concentration cycles reported by sensors located nearby in the field site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland (2014)

  2. IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland (2007)

  3. UNFCCC. Conference of the Parties (COP), United Nations Office at Geneva, Geneva, Switzerland (2010)

  4. T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, S. Maksyutov, SOLA 5 (2009)

  5. T.E. Taylor, C.W. O'Dell, C. Frankenberg, P.T. Partain, H.Q. Cronk, A. Savtchenko, R.R. Nelson, E.J. Rosenthal, A.Y. Chang, B. Fisher, G.B. Osterman, R.H. Pollock, D. Crisp, A. Eldering, M.R. Gunson, Atmos. Meas. Technol. 9, 3 (2016)

    Google Scholar 

  6. D. Crisp, H.R. Pollock, R. Rosenberg, L. Chapsky, R.A.M. Lee, F.A. Oyafuso, C. Frankenberg, C.W. O'Dell, C.J. Bruegge, G.B. Doran, A. Eldering, B.M. Fisher, D. Fu, M.R. Gunson, L. Mandrake, G.B. Osterman, F.M. Schwandner, K. Sun, T.E. Taylor, P.O. Wennberg, D. Wunch, Atmos. Meas. Technol. 10, 1 (2017)

    Article  Google Scholar 

  7. M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, Y. Yoshida, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P.P. Tans, A.E. Andrews, S.C. Biraud, T. Tanaka, S. Kawakami, P.K. Patra, Atmos. Chem. Phys. 13, 19 (2013)

    Article  Google Scholar 

  8. M. Zhou, B. Dils, P. Wang, R. Detmers, Y. Yoshida, C.W. O'Dell, D.G. Feist, V.A. Velazco, M. Schneider, M. De Mazière, Atmos. Meas. Technol. 9, 3 (2016)

    Google Scholar 

  9. D. Wunch, G.C. Toon, J.F. Blavier, R.A. Washenfelder, J. Notholt, B.J. Connor, D.W. Griffith, V. Sherlock, P.O. Wennberg, Philos. Trans. R. Soc. A 369, 1943 (2011)

    Article  Google Scholar 

  10. Y. Miyamoto, M. Inoue, I. Morino, O. Uchino, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P.P. Tans, A.E. Andrews, P.K. Patra, Atmos. Chem. Phys. 13, 10 (2013)

    Google Scholar 

  11. S.S. Kulawik, J.R. Worden, S.C. Wofsy, S.C. Biraud, R. Nassar, D.B.A. Jones, E.T. Olsen, R. Jimenez, S. Park, G.W. Santoni, B.C. Daube, J.V. Pittman, B.B. Stephens, E.A. Kort, G.B. Osterman, Atmos. Chem. Phys. 13, 6 (2013)

    Article  Google Scholar 

  12. S.C. Wofsy, H.S. Team, M. Cooperating, T. Satellite, Philos. Trans. R. Soc. A 369, 1943 (2011)

    Article  Google Scholar 

  13. P. Farrell, D. Culling, I. Leifer, Atmos. Environ. 74 (2013)

  14. C. Schadel, M.K.F. Bader, E.A.G. Schuur, C. Biasi, R. Bracho, P. Capek, S. De Baets, K. Diakova, J. Ernakovich, C. Estop-Aragones, D.E. Graham, I.P. Hartley, C.M. Iversen, E. Kane, C. Knoblauch, M. Lupascu, P.J. Martikainen, S.M. Natali, R.J. Norby, J.A. O’Donnell, T.R. Chowdhury, H. Santruckova, G. Shaver, V.L. Sloan, C.C. Treat, M.R. Turetsky, M.P. Waldrop, K.P. Wickland, Nautre Clim. Change 6, 10 (2016)

  15. J.K. Jansson, N. Tas, Nature Rev. Microbiol. 12, 6 (2014)

  16. W.F. Vincent, M. Lemay, M. Allard, Arctic Science 3, 2 (2017)

  17. K.C. Kelsey, K.P. Wickland, R.G. Striegl, J.C. Neff, Arc. Antarc. Alp. Res. 44, 4 (2012)

  18. E.S. Euskirchen, C.W. Edgar, M.R. Turetsky, M.P. Waldrop, J.W. Harden, J. Geophys. Res. Biogeosci. 119, 8 (2014)

    Article  Google Scholar 

  19. T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 2–3 (2002)

    Article  Google Scholar 

  20. B. Kühnreich, S. Wagner, J.C. Habig, O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119, 1 (2015)

    Article  Google Scholar 

  21. A. Seidel, S. Wagner, A. Dreizler, V. Ebert, Atmos. Meas. Technol. 8, 5 (2015)

    Article  Google Scholar 

  22. A. Seidel, S. Wagner, V. Ebert, Appl. Phys. B 109, 3 (2012)

    Article  Google Scholar 

  23. T.K. Flesch, R.L. Desjardins, D. Worth, Biomass Bioenergy 35, 9 (2011)

    Article  Google Scholar 

  24. E.D. Thoma, R.C. Shores, E.L. Thompson, D.B. Harris, S.A. Thorneloe, R.M. Varma, R.A. Hashmonay, M.T. Modrak, D.F. Natschke, H.A. Gamble, J. Air Waste Manag. Assoc. 55, 5 (2005)

    Article  Google Scholar 

  25. D. Griffith, D. Pohler, S. Schmidt, S. Hammer, S. Vardag, I. Levin, U. Platt, Geophysical Research Abstracts, 17, EGU 2015-11449-3, (2015)

  26. J. Rentz Dupuis, D.J. Mansur, R.M. Vaillancourt, D.L. Carlson, T. Evans, E. Schundler, L. Todd, K. Mottus, in Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling ed. by A.W. Fountain III, P. J. Gardner. Proc. SPIE 7304, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X, 7304 0P. Orlando, Florida, United States 14–16 April 2009 (2009)

  27. J.H. Rentz, J.R. Engel, D.L. Carlson, D.J. Mansur, R.M. Vaillancourt, G.J. Genetti, P. Griffiths, H. Yang, Proc. SPIE 5272, Industrial and Highway Sensors Technology (2004)

  28. H. Xia, W. Liu, Y. Zhang, R. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, H. Geng, Chin. Opt. Lett. 6, 6 (2008)

    Google Scholar 

  29. A.P.M. Michel, D.J. Miller, K. Sun, L. Tao, L. Stanton, M.A. Zondlo, J. Atmos. Ocean Technol. 33, 11 (2016)

    Article  Google Scholar 

  30. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 29 (2009)

    Article  Google Scholar 

  31. X. Chao, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 106, 4 (2011)

    Google Scholar 

  32. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24, 12 (2013)

    Google Scholar 

  33. M. Nikodem, G. Wysocki, Sensors 12, 12 (2012)

    Article  Google Scholar 

  34. M. Nikodem, G. Plant, D. Sonnenfroh, G. Wysocki, App. Phys. B 119, 1 (2014)

    Google Scholar 

  35. G. Plant, M. Nikodem, P. Mulhall, R.K. Varner, D. Sonnenfroh, G. Wysocki, Sensors 15, 9 (2015)

    Article  Google Scholar 

  36. L.S. Rothman, L.D.G. Young, J. Quant. Spectrosc. Radiat. Transf 25, 6 (1981)

    Article  Google Scholar 

  37. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 9–10 (2009)

  38. P. Werle, R. Miicke, F. Slemr, Appl. Phys. B 57, 2 (1993)

    Article  Google Scholar 

  39. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 8 (1964)

    Article  Google Scholar 

  40. D.E. Heard, Analytical Techniques for Atmospheric Measurement (Blackwell Publishing Ltd, Oxford, 2006)

    Book  Google Scholar 

  41. P. Werle, Spectrochim. Acta A 54, 2 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project is provided by the NASA Hydrospheric and Biospheric Science Research Program (Grant/Cooperative Agreement Number NNX14AN89G). The authors would like to thank our collaboration partners led by Dr. Emily L. Wilson (NASA Goddard) and Dr. Eugenie Euskirchen (University of Alaska—Fairbanks). We would also like to thank Prof. Amy Zanne for the loan of the LGR sensor used in calibration procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Houston Miller.

Additional information

This article is part of the topical collection “Field Laser Applications in Industry and Research” guest edited by Francesco D’Amato, Erik Kerstel, and Alan Fried.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, D.M., Adkins, E.M. & Miller, J.H. An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska. Appl. Phys. B 123, 245 (2017). https://doi.org/10.1007/s00340-017-6814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6814-8

Navigation