Skip to main content
Log in

Simultaneous remote sensing of multiple atmospheric gases (CO2, CH4, and H2O) based on an all-fiber laser heterodyne spectroradiometer

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report an all-fiber, near-infrared laser heterodyne radiometer (LHR) that uses two distributed feedback (DFB) diode lasers as local oscillators. This scheme allows the retrieval of the column abundances of multiple atmospheric gases of CH4, CO2, and H2O. To improve the detection efficiency, we operated the two DFB diode lasers emitting at 1653 and 1568 nm simultaneously within one scanning cycle. The duration of one scanning cycle was experimentally determined to be 2 s. An atmospheric transmission spectrum of multi-gas was observed within 20 s after averaging ten times. This approach has simplified the sensing system and reduced the probability of being affected by the rapid and random fluctuation of solar radiation due to clouds. We regulated the laser power, and hence, the amplitudes of background heterodyne signals excited by the two local oscillators, to accurately measure the transmission spectrum of each gas species. The results of the sun-tracking observations of this LHR sensor show good agreement with the data taken simultaneously by the GOSAT satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The developed LHR sensor presents a simple structure in simultaneously operating the two DFB diode lasers based on laser heterodyne radiometer for simultaneous measurement of multi-gases in a short scanning cycle.

References

  1. Total, C. WMO Greenhouse Gas Bulletin. https://www.uncclearn.org/wp-content/uploads/library/wmo204.pdf.

  2. G. Wang, F. Shen, H. Yi, P. Hubert, A. Deguine, D. Petitprez, R. Maamary, P. Augustin, M. Fourmentin, E. Fertein, M.W. Sigrist, T. Ba, W. Chen, Laser absorption spectroscopy applied to monitoring of short-lived climate pollutants (SLCPs). J. Mol. Spectros. 348, 142–151 (2018)

    Article  ADS  Google Scholar 

  3. IEA, Global Methane Tracker 2022, IEA, Paris https://www.iea.org/reports/global-methane-tracker-2022, (2022).

  4. M. IsaacHeld, B.J. Soden, Water vapor feedback and global warming. Annu. Rev. Energy. Environ. 25(1), 441–475 (2000)

    Article  Google Scholar 

  5. A. Richter, J.P. Burrows, C. Granier, Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437, 129–132 (2005)

    Article  ADS  Google Scholar 

  6. B. Dix, C.A.M. Brenninkmeijer, U. Frieß, T. Wagner, U. Platt, Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights. Atmos. Meas. Tech. 2, 639–652 (2009)

    Article  Google Scholar 

  7. F. Hase, T.J.W. Hannigan, M.T. Coey, A. Goldman, M. Höpfner, N.B. Jones, C.P. Rinsland, S.W. Wood, Intercomparison of retrieval codes used for the analysis of high-resolution: Ground-based FTIR measurements. J. Quant. Spectrosc. Radiat. Transf. 87, 25–52 (2004)

    Article  ADS  Google Scholar 

  8. D. Weidmann, R. Rose, M. Jenkins. A fully integrated, miniaturized quantum cascade laser heterodyne radiometer for EO, NCEO/CEOI conference, Nottingham (2009).

  9. A.J. Geer, W.A. Lahoz, S. Bekki, N. Bormann, Q. Errera, H.J. Eskes, D. Fonteyn, D.R. Jackson, M.N. Juckes, S. Massar, V.H. Peuch, S. Rharmili, A. Segers, The ASSET intercomparison of ozone analyses: method and first results. Atmos. Chem. Phys. 6, 5445–5474 (2006)

    Article  ADS  Google Scholar 

  10. B. Dix, C.A.M. Brenninkmeijer, U. Frieß, T. Wagner, U. PlattA, Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights. Atmos. Meas. Tech. 2, 639–652 (2009)

    Article  Google Scholar 

  11. F. Shen, Development of a Laser Heterodyne Radiometer for Atmospheric Remote Sensing (Université du Littoral Côte d’Opale, Dunkerque, 2019)

    Google Scholar 

  12. H. Deng, C. Yang, Z. Xu, M. Li, A. Huang, L. Yao, M. Hu, B. Chen, Y. He, R. Kan, J. Liu, Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column. Opt. Express 29, 2003–2013 (2021)

    Article  ADS  Google Scholar 

  13. F. Shen, G. Wang, J. Wang, T. Tan, G. Wang, P. Jeseck, Y.V. Te, X. Gao, W. Chen, Transportable mid-infrared laser heterodyne radiometer operating in the shot-noise dominated regime. Opt. Lett. 46, 3171–3174 (2021)

    Article  ADS  Google Scholar 

  14. D. Weidmann, T. Tsai, N.A. Macleod, G. Wysocki, Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry. Opt. Lett. 36, 1951–1953 (2011)

    Article  ADS  Google Scholar 

  15. J. Wang, C. Sun, G. Wang, M. Zou, T. Tan, K. Liu, W. Chen, X. Gao, A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4. Opt. Laser Eng. 129, 106083 (2020)

    Article  Google Scholar 

  16. J. Wang, G. Wang, T. Tan, G. Zhu, C. Sun, Z. Cao, W. Chen, X. Gao, Mid-infrared laser heterodyne radiometer (LHR) based on a 3.53 μm room-temperature interband cascade laser. Opt. Express. 27, 9610–9619 (2019)

    Article  ADS  Google Scholar 

  17. E.L. Wilson, M.L. McLinden, J.H. Miller, G.R. Allan, L.E. Ott, H.R. Melroy, G.B. Clarke, Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column. Appl. Phys. B 114(3), 385–393 (2014)

    Article  ADS  Google Scholar 

  18. W. Damien, W.J. Reburn, K.M. Smith, Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis. Appl. Opt. 46(29), 7162–7171 (2007)

    Article  ADS  Google Scholar 

  19. C. Brogniez, M. Houët, A. M. Siani, P. Weihs, M. Allaart, J. Lenoble, T. Cabot, A. Casinière, E. Kyrö. Ozone column retrieval from solar UV measurements at ground level: Effects of clouds and results from six European sites. J. Geophy. Res-Atmos., 110(D24) (2005).

  20. J. Wang, Development and Application of Infrared Laser Heterodyne Radiometry for Remote Sensing of Greenhouse Gases in the Atmospheric Column (Université du Littoral Côte d’Opale, Anhui Institute of Optics and Fine Mechanics (AIOFM), Heifei, 2021)

    Google Scholar 

  21. T. Matsunaga, S. Maksyutov, A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories (Satellite Observation Center, National Institute for Environmental Studies, 2018), p. 129.

  22. H.R. Melroy, E.L. Wilson, G.B. Clarke, L.E. Ott, J. Mao, A.K. Ramanathan, M.L. McLinden, Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR). Appl. Phys. B 120, 609–615 (2015)

    Article  ADS  Google Scholar 

  23. H. Deng, M. Li, Y. He, Z. Xu, L. Yao, B. Chen, C. Yang, R. Kan, Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements. Spectrochim. Acta. A 230, 118071 (2020)

    Article  Google Scholar 

  24. A. Dudhia, The reference forward model (RFM). J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017)

    Article  ADS  Google Scholar 

  25. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, The Hitran 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017)

    Article  ADS  Google Scholar 

  26. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, J.P. Burrows, MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund—Radiative transfer studies and their application. Atmos. Chem. Phys. 4, 955–966 (2004)

    Article  ADS  Google Scholar 

  27. Z. Xue, F. Shen, J. Li, X. Liu, J. Wang, G. Wang, K. Liu, W. Chen, X. Gao, T. Tan, A MEMS modulator-based dual-channel mid-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CH4, H2O and N2O. Opt Express. 30(18), 31828–31839 (2022)

    Article  ADS  Google Scholar 

  28. F. Shen, G. Wang, Z. Xue, T. Tan, Z. Cao, X. Gao, W. Chen, Impact of lock-in time constant on remote monitoring of trace gas in the atmospheric column using laser heterodyne radiometer (LHR). Remote Sens. 14(12), 2923 (2022)

    Article  ADS  Google Scholar 

  29. D.S. Bomse, J.E. Tso, M.M. Flores, J.H. Miller, Precision heterodyne oxygen-corrected spectrometry: Vertical profiling of water and carbon dioxide in the troposphere and lower stratosphere. Appl. Opt. 59, B10–B17 (2020)

    Article  Google Scholar 

Download references

Funding

This project is supported by Ningbo Natural Science Foundation (2202J159), Key Research and Development Program of Zhejiang Province (2021C03178), Zhejiang Provincial Natural Science Foundation of China (LQ22F050014), NingboTech University (20201203Z0196), and the Scientific Research Foundation for Talent Introduction of Zhejiang University Ningbo Campus (20201203Z0180).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by GW, YZ, TZ, MD, JW, SW, and SH. The first draft of the manuscript was written by GW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shengnan Wu or Sailing He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 76 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhu, Y., Zhang, T. et al. Simultaneous remote sensing of multiple atmospheric gases (CO2, CH4, and H2O) based on an all-fiber laser heterodyne spectroradiometer. Appl. Phys. B 129, 126 (2023). https://doi.org/10.1007/s00340-023-08071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08071-2

Navigation