Skip to main content
Log in

Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Sulfur dioxide (SO2) trace gas detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using a continuous wave, distributed feedback quantum cascade laser operating at 7.24 μm was performed. Influence of water vapor addition on monitored QEPAS SO2 signal was also investigated. A normalized noise equivalent absorption coefficient of NNEA (1σ) = 1.21 × 10−8 cm−1 W Hz−1/2 was obtained for the ν 3 SO2 line centered at 1,380.93 cm−1 when the gas sample was moisturized with 2.3 % H2O. This corresponds to a minimum detection limit (1σ) of 63 parts per billion by volume for a 1 s lock-in time constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1–18 (2010)

    Article  ADS  Google Scholar 

  2. R. Lewicki, M. Jahjah, Y. Ma, P. Stefinski, J. Tarka, M. Razeghi, F. K. Tittel, Chap. 23 in The Wonder of Nanotechnology: Quantum Optoelectronic devices and applications. SPIE Press, pp. 597–632 (2013)

  3. L. Gong, R. Lewicki, R. Griffin, F.K. Tittel, C.R. Lonsdale, R.G. Stevens, J.R. Pierce, Q.G.J. Malloy, S.A. Travis, L.M. Bobmanuel, B.L. Lefer, J.H. Flynn, Atmos. Environ. 77, 893–900 (2013)

    Article  ADS  Google Scholar 

  4. A. Varga, Z. Bozóki, M. Szakáll, G. Szabó, Appl. Phys. B 85, 315–321 (2006)

    Article  ADS  Google Scholar 

  5. S. Solga, T. Schwartz, M. Mudalel, L. Spacek, R. Lewicki, F. K. Tittel, C. Loccioni, T. Risby, J. Breath Res. 7(3), 037101 (2013)

    Google Scholar 

  6. A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  7. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902–1904 (2002)

    Article  ADS  Google Scholar 

  8. F. K. Tittel, R. Lewicki, Ch. 15, (Woodhead Publishing Ltd., 2013), pp. 579–629

  9. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B.E. Bernacki, J. Kriesel, Appl. Phys. B 112, 25–33 (2013)

    Article  ADS  Google Scholar 

  10. C. Bauer, U. Willer, R. Lewicki, A. Pohlkötter, A. Kosterev, D. Kosynkin, F.K. Tittel, W. Schade, J. Phys: Conf. Ser. 157(1), 012002 (2009)

    ADS  Google Scholar 

  11. A.A. Kosterev, F.K. Tittel, D. Serebryakov, A.L. Malinovsky, I. Morozov, Rev. Sci. Instrum. 76, 1–9 (2005)

    Article  Google Scholar 

  12. A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133–138 (2005)

    Article  ADS  Google Scholar 

  13. T.L. Cottrell, J.C. McCoubrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961)

    Google Scholar 

  14. Pollution Prevention and Abatement Handbook (The World Bank Group, Washington DC, 1998)

  15. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  16. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627–635 (2010)

    Article  ADS  Google Scholar 

  17. S. Schilt, L. Thevenaz, Infrared Phys. 48, 154–162 (2006)

    Article  Google Scholar 

  18. R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindlemann, J. Hespanha, A.S. Morse, K. Karrai, I. Tiemann, S. Manus, Rev. Sci. Instrum. 71, 2776–2780 (2000)

    Article  ADS  Google Scholar 

  19. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301–306 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

JPW, HM and MB acknowledge financial support provided by the Austrian research funding association under the scope of the COMET program within the research network “Process Analytical Chemistry” (contract # 825340) and the Carinthian Tech Research RL, FKT acknowledge financial support provided by NSF ERC MIRTHE and NSF-ANR NexCILAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waclawek, J.P., Lewicki, R., Moser, H. et al. Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL. Appl. Phys. B 117, 113–120 (2014). https://doi.org/10.1007/s00340-014-5809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5809-y

Keywords

Navigation