Skip to main content

Quartz Enhanced Photoacoustic Sensors for Trace Gas Detection in the IR and THz Spectral Range

  • Conference paper
  • First Online:
THz and Security Applications

Abstract

Quartz-enhanced photo-acoustic spectroscopy (QEPAS) is one of the most robust and sensitive trace-gas detection techniques, which in the mid-IR range offers the advantage of high sensitivity, compactness and fast time-response. One of the main features of the photoacoustic techniques is that no optical detection is required. Thus, the use of the QEPAS technique in THz range would allow to avoid the use of low-noise but expensive, bulky and cryogenic bolometers. The results obtained in the development of QEPAS sensors for trace gas detection of several chemical species, employing mid-IR and THz laser sources will be reviewed. Normalized noise equivalent absorption coefficients (NNEA) down to 10−10 cm−1 W/Hz½ and part per trillion concentration detection ranges have been attained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borri S, Patimisco P, Sampaolo A, Beere HE, Ritchie DA, Vitiello MS, Scamarcio G, Spagnolo V (2013) THz quartz enhanced photo-acoustic sensor. Appl Phys Lett 103:021105

    Google Scholar 

  2. Cao Y, Jin W, Ho LH, Liu Z (2012) Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers. Opt Lett 37:214–216

    Article  ADS  Google Scholar 

  3. Curl RF, Capasso F, Gmachl C, Kosterev AA, McManus B, Lewicki R, Pusharsky M, Wysocki G, Tittel FK (2010) Quantum cascade lasers in chemical physics. Chem Phys Lett 487:1–18

    Article  ADS  Google Scholar 

  4. Dong L, Lewicki R, Liu K, Buerki PR, Weida MJ, Tittel FK (2012) Ultra-sensitive carbon monoxide detection by using ECQCL based quartz-enhanced photoacoustic spectroscopy. Appl Phys B 107:275–283

    Article  ADS  Google Scholar 

  5. Dong L, Spagnolo V, Lewicki R, Tittel FK (2011) Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt Express 19:24037–24045

    Article  ADS  Google Scholar 

  6. Elia A, Lugarà PM, Di Franco C, Spagnolo V (2009) Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 9:9616–9628

    Article  Google Scholar 

  7. Flygare WH (1968) Molecular relaxation. Acc Chem Res 1:121–127

    Article  Google Scholar 

  8. Kosterev AA, Bakhirkin YA, Curl RF, Tittel FK (2002) Quartz-enhanced photoacoustic spectroscopy. Opt Lett 27:1902–1904

    Article  ADS  Google Scholar 

  9. Kosterev AA, Tittel FK, Serebryakov DV, Malinovsky AL, Morozov IV (2005) Applications of quartz tuning forks in spectroscopic gas sensing. Rev Sci Instrum 76:043105

    Article  ADS  Google Scholar 

  10. Kosterev AA, Bakhirkin YA, Tittel FK (2005) Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region. Appl Phys B 80:133–138

    Article  ADS  Google Scholar 

  11. Kosterev AA, Buerki PR, Dong L, Reed M, Day T, Tittel FK (2010) QEPAS detector for rapid spectral measurements. Appl Phys B 100:173–180

    Article  ADS  Google Scholar 

  12. Lewicki R, Wysocki G, Kosterev AA, Tittel FK (2007) QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm. Opt Express 15:7357–7366

    Article  ADS  Google Scholar 

  13. Liu K, Guo XY, Yi HM, Chen WD, Zhang WJ, Gao XM (2009) Off-beam quartz-enhanced photoacoustic spectroscopy. Opt Lett 34:1594–1596

    Article  ADS  Google Scholar 

  14. Liu K, Yi H, Kosterev AA, Chen WD, Dong L, Wang L, Tan T, Zhang WJ, Tittel FK, Gao XM (2010) Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation. Rev Sci Instrum 81:103103

    Article  ADS  Google Scholar 

  15. Patimisco P, Spagnolo V, Vitiello MS, Tredicucci A, Scamarcio G, Bledt CM, Harrington JA (2012) Coupling external mid-IR quantum cascade lasers with low loss metallic/dielectric waveguides. Appl Phys B 108:255–260

    Article  ADS  Google Scholar 

  16. Patimisco P, Spagnolo V, Vitiello MS, Scamarcio G, Bledt CM, Harrington JA (2013) Low-loss hollow waveguide fibers for mid-infrared quantum cascade lased sensing applications. Sensors 13:1329–1340

    Article  Google Scholar 

  17. Patimisco P, Borri S, Sampaolo A, Beere HE, Ritchie DA, Vitiello MS, Scamarcio G, Spagnolo V (2013) Quartz enhanced photo-acoustic gas sensor based on custom tuning fork and terahertz quantum cascade laser. Analyst. First published online 04 Oct 2013. doi: 10.1039/c3an01219k

  18. Phillips MC, Myers TL, Wojcik MD, Cannon BD (2007) External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt Lett 32:1177–1179

    Article  ADS  Google Scholar 

  19. Schilt S, Kosterev AA, Tittel FK (2009) Performance evaluation of a near infrared QEPAS based ethylene sensor. Appl Phys B 95:813–824

    Article  ADS  Google Scholar 

  20. Sigrist W (2003) Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev Sci Instrum 71:486–490

    Article  ADS  Google Scholar 

  21. Spagnolo V, Kosterev AA, Dong L, Lewicki R, Tittel FK (2010) NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl Phys B 100:125–130

    Article  ADS  Google Scholar 

  22. Spagnolo V, Dong L, Kosterev AA, Thomazy D, Doty JH, Tittel FK (2011) Modulation cancellation method for measurements of small temperature differences in a gas. Opt Lett 36:460–462

    Article  ADS  Google Scholar 

  23. Spagnolo V, Dong L, Kosterev AA, Thomazy D, Doty JH, Tittel FK (2011) Modulation cancellation method in laser spectroscopy. Appl Phys B 103:735–742

    Article  ADS  Google Scholar 

  24. Spagnolo V, Dong L, Kosterev AA, Tittel FK (2012) Modulation cancellation method for isotope 18O/16O ratio measurements in water. Opt Express 20:3401–3407

    Article  ADS  Google Scholar 

  25. Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki BE, Kriesel J (2013) Part-per-trillion level SF6 detection using a quartz enhanced photo acoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. Opt Lett 37:4461–4463

    Article  ADS  Google Scholar 

  26. Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki BE, Kriesel J (2013) Mid-infrared fiber-coupled QCL-QEPAS sensor. Appl Phys B 112:25–33. doi:10.1007/s00340-013-5388-3

    Article  ADS  Google Scholar 

  27. Williams BS, Kumar S, Hu Q, Reno JL (2006) High-power terahertz quantum-cascade lasers. Electron Lett 42:89–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Spagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Patimisco, P., Borri, S., Sampaolo, A., Vitiello, M.S., Scamarcio, G., Spagnolo, V. (2014). Quartz Enhanced Photoacoustic Sensors for Trace Gas Detection in the IR and THz Spectral Range. In: Corsi, C., Sizov, F. (eds) THz and Security Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8828-1_8

Download citation

Publish with us

Policies and ethics