Skip to main content
Log in

Mid-infrared fiber-coupled QCL-QEPAS sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver–silver iodine (Ag–AgI) coatings and internal core diameter of 300 μm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption of 2.7 × 10−10 W cm−1 Hz−1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 487, 1–18 (2010)

    Article  ADS  Google Scholar 

  2. A. Elia, P.M. Lugarà, C. Di Franco, V. Spagnolo, Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 9, 9616–9628 (2009)

    Article  Google Scholar 

  3. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)

    Article  Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  5. A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region. Appl. Phys. B 80, 133–138 (2005)

    Article  ADS  Google Scholar 

  6. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm. Opt. Express 15, 7357–7366 (2007)

    Article  ADS  Google Scholar 

  7. A.A. Kosterev, P.R. Buerki, L. Dong, M. Reed, T. Day, F.K. Tittel, QEPAS detector for rapid spectral measurements. Appl. Phys. B 100, 173–180 (2010)

    Article  ADS  Google Scholar 

  8. C. Bauer, U. Willer, W. Schade, Use of quantum cascade laser for detection of explosives: progress and challenges. Opt. Eng. 49, 111126 (2010)

    Article  ADS  Google Scholar 

  9. K. Liu, H. Yi, A.A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F.K. Tittel, X. Gao, Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation. Rev. Sci. Inst. 81, 103103 (2010)

    Article  ADS  Google Scholar 

  10. L. Dong, V. Spagnolo, R. Lewicki, F.K. Tittel, Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt. Express 19, 24037–24045 (2011)

    Article  ADS  Google Scholar 

  11. L. Dong, R. Lewicki, K. Liu, P.R. Buerki, M.J. Weida, F.K. Tittel, Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 107, 275–283 (2012)

    Article  ADS  Google Scholar 

  12. V. Spagnolo, L. Dong, A.A. Kosterev, F.K. Tittel, Modulation cancellation method for isotope 18O/16O ratio measurements in water. Opt. Express 20, 3401–3407 (2012)

    Article  ADS  Google Scholar 

  13. S. Schilt, A.A. Kosterev, F.K. Tittel, Performance evaluation of a near infrared QEPAS based ethylene sensor. Appl. Phys. B 95, 813–824 (2009)

    Article  ADS  Google Scholar 

  14. M. C. Phillips, T. L. Myers, M. D. Wojcik, B. D. Cannon, “External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features”

  15. Intergovernmental Panel on Climate Change (IPCC), Climate Change 1994, Radiative Forcing of Climate Change. The Press Syndicate of the University of Cambridge. New York, NY (1994)

  16. R.D. Bates Jr, J.T. Knudtson, G.W. Flynn, Energy transfer among excited vibrational states of SF6. Chem. Phys. Lett. 8, 103 (1971)

    Article  ADS  Google Scholar 

  17. M.A. Gondal, A. Dastageer, M.H. Shwehdi, Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries. Talanta 62, 131–141 (2004)

    Article  Google Scholar 

  18. A. Ksendzov, O. Lay, S. Martin, J.S: Sanghera, L.E: Busse, W.H. Kim, P.C. Pureza, V.Q. Nguyen, I.D. Aggarwal, Characterization of mid-infrared single mode fibers as modal filters, Appl. Opt. 46, 7957–7962 (2007)

    Google Scholar 

  19. A. Ksendzov, T. Lewi, O.P. Lay, S.R. Martin, R.O. Gappinger, P.R. Lawson, R.D. Peters, S. Shalem, A. Tsun, A. Katzir, Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. Appl. Opt. 47, 5728–5735 (2008)

    Article  ADS  Google Scholar 

  20. J.M. Kriesel, N. Gat, B.E. Bernacki, R.L. Erikson, B.D. Cannon, T.L. Myers, C.M. Bledt, J.A. Harrington, “Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy”, Proc. SPIE 8018, 80180V1-10 (2011)

    Google Scholar 

  21. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, QEPAS spectrophones: design, optimization, and performance. Appl. Phys. B 100, 627–635 (2010)

    Article  ADS  Google Scholar 

  22. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B.E. Bernacki, J. Kriesel, Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy based sensor with single-mode fiber-coupled quantum cascade laser excitation. Optic Letters 37, 460–462 (2012)

    Article  Google Scholar 

  23. V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl. Phys. B 100, 125–130 (2010)

    Article  ADS  Google Scholar 

  24. J.A. Harrington, “Infrared Fibers and their applications”, SPIE Press monograph (2004)

  25. P. Patimisco, V. Spagnolo, M.S. Vitiello, A. Tredicucci, G. Scamarcio, C.M. Bledt, J.A. Harrington, Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides. Appl. Phys. B 102, 255–260 (2012)

    Article  ADS  Google Scholar 

  26. Available online: http://www.hitran.com

  27. P. Werle, Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl. Phys. B 102, 313–329 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Italian research projects: PON01_02238 and PON02_00675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Spagnolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spagnolo, V., Patimisco, P., Borri, S. et al. Mid-infrared fiber-coupled QCL-QEPAS sensor. Appl. Phys. B 112, 25–33 (2013). https://doi.org/10.1007/s00340-013-5388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5388-3

Keywords

Navigation