Skip to main content
Log in

Development of environmental friendly Mo-doped MnO2 via hydrothermal route for supercapacitor as pollution-free source of energy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The increasing use of fossil fuels and resulting environmental concerns have elevated the global issues, leading to a focus on developing alternative sustainable energy sources. However, supercapacitors (SCs) have been considered as possible solutions to address major global energy challenges. These devices are designed to generate and store energy efficiently. In this study, Mn-doped MnO2 material was fabricated utilizing the simple hydrothermal route to increase the electrochemical efficiency of MnO2 by doping strategy. However, the properties of the Mn-doped MnO2 material were analyzed with different analytical tools. The electrochemical result of Mn-doped MnO2 was determined, which revealed higher specific capacitance of 920.86 F g−1 than MnO2 (512.90 F g−1) at 1 A g−1 with low charge transfer resistance of Rct = 0.9 Ω. Furthermore, Mn-doped MnO2 exhibited exceptional stability of 50 h with capacitive retention of 97.14% after the 5000th cycle and contains a larger surface area with diverse morphology, which was responsible for the enhanced capacitive performance for use in various fields of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Jiang, X. Wang, H. Huang, D. Zhang, N. Ghadimi, Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm. J Energy Storage 55, 105311 (2022). https://doi.org/10.1016/J.EST.2022.105311

    Article  Google Scholar 

  2. ur Rehman U, Yaqoob K, Adil Khan M. Optimal power management framework for smart homes using electric vehicles and energy storage. Int J Electr Power Energy Syst 2022;134:107358. https://doi.org/10.1016/J.IJEPES.2021.107358.

  3. L.L. da Silva, M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier et al., Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain Energy Technol Assessments 46, 101286 (2021). https://doi.org/10.1016/J.SETA.2021.101286

    Article  Google Scholar 

  4. L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/B813846J

    Article  Google Scholar 

  5. H.N. Heme, M.S.N. Alif, S.M.S.M. Rahat, S.B. Shuchi, Recent progress in polyaniline composites for high capacity energy storage: A review. J Energy Storage 42, 103018 (2021). https://doi.org/10.1016/J.EST.2021.103018

    Article  Google Scholar 

  6. M. Hussain, M.M. Alanazi, S.A.M. Abdelmohsen, S.D. Alahmari, M. Abdullah, S. Aman et al., Enhanced performance of hydrothermally prepared Ag2Se/rGO nanosheet composite for energy storage applications. Diam. Relat. Mater. 142, 110764 (2024). https://doi.org/10.1016/J.DIAMOND.2023.110764

    Article  ADS  Google Scholar 

  7. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012). https://doi.org/10.1002/ADMA.201202146

    Article  Google Scholar 

  8. J. Cherusseri, D. Pandey, K. Sambath Kumar, J. Thomas, L. Zhai, Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale 12, 17649–17662 (2020). https://doi.org/10.1039/D0NR03549A

    Article  Google Scholar 

  9. D. Zha, P. Xiong, X. Wang, Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. Electrochim. Acta 185, 218–228 (2015). https://doi.org/10.1016/J.ELECTACTA.2015.10.139

    Article  Google Scholar 

  10. F. Li, H. Chen, X.Y. Liu, S.J. Zhu, J.Q. Jia, C.H. Xu et al., Low-cost high-performance asymmetric supercapacitors based on Co2AlO4@MnO2 nanosheets and Fe3O4 nanoflakes. J Mater Chem A 4, 2096–2104 (2016). https://doi.org/10.1039/C5TA09914E

    Article  Google Scholar 

  11. Z. Pan, Z. Lu, L. Xu, D. Wang, A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl. Surf. Sci. 510, 145384 (2020). https://doi.org/10.1016/J.APSUSC.2020.145384

    Article  Google Scholar 

  12. Y. Zhang, J. Liu, S.L. Li, Z.M. Su, Y.Q. Lan, Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem 1, 100021 (2019). https://doi.org/10.1016/J.ENCHEM.2019.100021

    Article  Google Scholar 

  13. J. Sahu, S. Kumar, F. Ahmed, P.A. Alvi, B. Dalela, D.M. Phase et al., Electrochemical properties of high-performance supercapacitor based on Nd-Doped Zno nanoparticles and electronic structure investigated with Xas. SSRN Electron. J. (2022). https://doi.org/10.2139/SSRN.4114229

    Article  Google Scholar 

  14. N. Parveen, S.A. Ansari, M.Z. Ansari, M.O. Ansari, Manganese oxide as an effective electrode material for energy storage: a review. Environ. Chem. Lett. 20, 283–309 (2022). https://doi.org/10.1007/S10311-021-01316-6/FIGURES/12

    Article  Google Scholar 

  15. P. Siwatch, K. Sharma, N. Singh, N. Manyani, S.K. Tripathi, Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte. Electrochim. Acta 381, 138235 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.138235

    Article  Google Scholar 

  16. L. Cao, H. Li, X. Liu, S. Liu, L. Zhang, W. Xu et al., Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with “sphere-in-layer” interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 599, 443–452 (2021). https://doi.org/10.1016/j.jcis.2021.04.105

    Article  ADS  Google Scholar 

  17. M. Ali, S.D. Alahmari, S.A.M. Abdelmohsen, M.M. Alanazi, A.G. Al-Sehemi, M. Abdullah et al., Fabrication of MnSe/WSe2 nanohybrid electrode prepared through hydrothermal method for supercapacitor applications. Ceram. Int. 50, 6931–6940 (2024). https://doi.org/10.1016/J.CERAMINT.2023.12.042

    Article  Google Scholar 

  18. M. Hussain, S.D. Alahmari, F.F. Alharbi, S.R. Ejaz, M. Abdullah, S. Aman et al., Hydrothermal synthesis of the NiS@g-C3N4 nanohybrid electrode material for supercapacitor applications. J Energy Storage 80, 110289 (2024). https://doi.org/10.1016/J.EST.2023.110289

    Article  Google Scholar 

  19. S. Korkmaz, A. Kariper, O. Karaman, C. Karaman, The production of rGO/ RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceram. Int. 47, 34514–34520 (2021). https://doi.org/10.1016/J.CERAMINT.2021.08.366

    Article  Google Scholar 

  20. S. Shivakumara, T.R. Penki, N. Munichandraiah, Synthesis and characterization of porous flowerlike ?-fe2o3 nanostructures for supercapacitor application. ECS Electrochem Lett 2, A60 (2013). https://doi.org/10.1149/2.002307EEL/XML

    Article  Google Scholar 

  21. N. Kandasamy, T. Venugopal, K. Kannan, Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties. J. Nanosci. Nanotechnol. 18, 3960–3968 (2017). https://doi.org/10.1166/JNN.2018.15187

    Article  Google Scholar 

  22. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013). https://doi.org/10.1021/AM400012H/SUPPL_FILE/AM400012H_SI_001.PDF

    Article  Google Scholar 

  23. D. Kalpana, K.S. Omkumar, S.S. Kumar, N.G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52, 1309–1315 (2006). https://doi.org/10.1016/J.ELECTACTA.2006.07.032

    Article  Google Scholar 

  24. S. Tajik, H. Beitollahi, Z. Dourandish, P. Mohammadzadeh Jahani, I. Sheikhshoaie, M.B. Askari et al., Applications of non-precious transition metal oxide nanoparticles in electrochemistry. Electroanalysis 34, 1065–1091 (2022). https://doi.org/10.1002/ELAN.202100393

    Article  Google Scholar 

  25. L. Wang, X. Wang, X. Xiao, F. Xu, Y. Sun, Z. Li, Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim. Acta 111, 937–945 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.08.094

    Article  Google Scholar 

  26. T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, G. Yang, TiC3 monolayer with high specific capacity for sodium-ion batteries. J. Am. Chem. Soc. 140, 5962–5968 (2018). https://doi.org/10.1021/JACS.8B02016/SUPPL_FILE/JA8B02016_SI_001.PDF

    Article  Google Scholar 

  27. W. Deng, X. Ji, Q. Chen, C.E. Banks, Electrochemical capacitors utilising transition metal oxides : an update of recent developments. RSC Adv. 1, 1171–1178 (2011). https://doi.org/10.1039/C1RA00664A

    Article  ADS  Google Scholar 

  28. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Research progress in MnO2–carbon based supercapacitor electrode materials. Small 14, 1702883 (2018). https://doi.org/10.1002/SMLL.201702883

    Article  Google Scholar 

  29. Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010 98 2010;9:615–27. https://doi.org/10.1038/nrd2591.

  30. F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012). https://doi.org/10.1002/ADMA.201104763

    Article  Google Scholar 

  31. W. Wang, F. Lv, B. Lei, S. Wan, M. Luo, S. Guo, Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 28, 10117–10141 (2016). https://doi.org/10.1002/ADMA.201601909

    Article  Google Scholar 

  32. X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020). https://doi.org/10.1016/J.JOULE.2020.02.010

    Article  Google Scholar 

  33. Cea C, Spyropoulos GD, Jastrzebska-Perfect P, Ferrero JJ, Gelinas JN, Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat Mater 2020 196 2020;19:679–86. https://doi.org/10.1038/s41563-020-0638-3.

  34. G. Di Liberto, S. Tosoni, G. Pacchioni, Theoretical treatment of semiconductor heterojunctions for photocatalysis: the WO3/BiVO4 interface. J. Phys. Condens. Matter 31, 434001 (2019). https://doi.org/10.1088/1361-648X/AB2FA4

    Article  Google Scholar 

  35. A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 58, 167–197 (2000). https://doi.org/10.1016/S0920-5861(00)00251-0

    Article  Google Scholar 

  36. S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462–463, 178–195 (2013). https://doi.org/10.1016/J.APCATA.2013.04.039

    Article  Google Scholar 

  37. R. Gao, D. Yan, Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 10, 1900954 (2020). https://doi.org/10.1002/AENM.201900954

    Article  Google Scholar 

  38. Z. Liu, F. Wang, Z. Zhang, S. Min, Interfacing CdS particles on Ni foam as a three-dimensional monolithic photocatalyst for efficient visible-light-driven H2 evolution. Int. J. Hydrogen Energy 45, 31678–31688 (2020). https://doi.org/10.1016/J.IJHYDENE.2020.09.031

    Article  Google Scholar 

  39. X. Meng, C. Zhang, C. Dong, W. Sun, D. Ji, Y. Ding, Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS. Chem. Eng. J. 389, 124432 (2020). https://doi.org/10.1016/J.CEJ.2020.124432

    Article  Google Scholar 

  40. D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, A. Yu, MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J. Power. Sources 199, 409–412 (2012). https://doi.org/10.1016/J.JPOWSOUR.2011.10.051

    Article  Google Scholar 

  41. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang et al., Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl. Energy 134, 439–445 (2014). https://doi.org/10.1016/J.APENERGY.2014.08.050

    Article  ADS  Google Scholar 

  42. R. Zhong, M. Xu, N. Fu, R. Liu, A. Zhou, X. Wang et al., A flexible high-performance symmetric quasi-solid supercapacitor based on Ni-doped MnO2 nano-array @ carbon cloth. Electrochim. Acta 348, 136209 (2020). https://doi.org/10.1016/J.ELECTACTA.2020.136209

    Article  Google Scholar 

  43. Q. Gao, J. Wang, B. Ke, J. Wang, Y. Li, Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes. Ceram. Int. 44, 18770–18775 (2018). https://doi.org/10.1016/J.CERAMINT.2018.07.108

    Article  Google Scholar 

  44. M.U. Nisa, A.G. Abid, S. Gouadria, T. Munawar, Z.A. Alrowaili, M. Abdullah et al., Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surfaces Interfaces 31, 102012 (2022). https://doi.org/10.1016/J.SURFIN.2022.102012

    Article  Google Scholar 

  45. M. Abdullah, P. John, S. Manzoor, M.I. Ghouri, H.H. Hegazy, A.H. Chugtai et al., Facile fabrication of CuO/Ag2Se nanosized composite via hydrothermal approach for the electrochemical energy conversion system. J Energy Storage 56, 105929 (2022). https://doi.org/10.1016/J.EST.2022.105929

    Article  Google Scholar 

  46. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/J.CEJ.2020.126352

    Article  Google Scholar 

  47. Z. Zeng, P. Sun, J. Zhu, X. Zhu, Ag-doped manganese oxide prepared by electrochemical deposition on carbon fiber for supercapacitors. RSC Adv. 5, 17550–17558 (2015). https://doi.org/10.1039/C4RA16646A

    Article  ADS  Google Scholar 

  48. G. Li, X. Xu, R. Han, J. Ma, Synthesis and superior electrochemical properties of shaggy hollow Zn-doped Fe2O3 nanospheres for high-performance lithium-ion batteries. CrystEngComm 18, 2949–2955 (2016). https://doi.org/10.1039/C5CE02408K

    Article  Google Scholar 

  49. M. Ali, S.D. Alahmari, S.A.M. Abdelmohsen, M.M. Alanazi, A.G. Al-Sehemi, M. Abdullah et al., Fabrication of MnSe/WSe2 nanohybrid electrode prepared through hydrothermal method for supercapacitor applications. Ceram. Int. (2023). https://doi.org/10.1016/J.CERAMINT.2023.12.042

    Article  Google Scholar 

  50. A. Singh, D. Kumar, B. Singh, V. Shinde, R. Kaur, Fractal analysis of pure and Fe-doped manganese oxide supercapacitor electrodes. Prot Met Phys Chem Surfaces 58, 991–998 (2022). https://doi.org/10.1134/S2070205122050240/FIGURES/6

    Article  Google Scholar 

  51. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419–1430 (2018). https://doi.org/10.1007/S13738-018-1342-Y/FIGURES/13

    Article  Google Scholar 

  52. A.V. Radhamani, M. Krishna Surendra, M.S.R. Rao, Zn doped δ-MnO2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors. Appl. Surf. Sci. 450, 209–218 (2018). https://doi.org/10.1016/J.APSUSC.2018.04.081

    Article  ADS  Google Scholar 

  53. F. Iram, G.M. Mustafa, G. Ali, H. Ahmad, S.M. Ramay, Z. Iqbal et al., Transition metal (Zn, Mn, and Ni) incorporated CuO nanostructures for supercapacitor applications. J Energy Storage 73, 108829 (2023). https://doi.org/10.1016/J.EST.2023.108829

    Article  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Declarations

Yes, this paper complies with the journal's ethical guidelines.

Conflict of interest

The authors state that there is no conflict in their work.

Research data policy and Data Availability statements

On reasonable request, the author will make the datasets created during and/or analyzed during the current investigation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F.F., Abdullah, M., Aman, S. et al. Development of environmental friendly Mo-doped MnO2 via hydrothermal route for supercapacitor as pollution-free source of energy. Appl. Phys. A 130, 236 (2024). https://doi.org/10.1007/s00339-024-07359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07359-0

Keywords

Navigation