Skip to main content

Advertisement

Log in

Fabrication and characterization of PCL@PAN nanofibrous scaffold containing nature-derived oyster shell for bone tissue engineering applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bone tissue engineering is developed over decades and various materials and techniques are introduced to produce an improved scaffold for bone growth and regeneration. The polymeric scaffolds composed of bioceramics are prospective candidates for treating bone defects. The applications of coaxial electrospinning in tissue engineering are growing due to the increased functionality of the fibrous scaffolds compared to basic electrospinning. In this study, a biodegradable and biocompatible polycaprolactone (PCL)/polyacrylonitrile (PAN) core–shell nanofibrous structure composed of oyster shell (OS) as a bioceramic has been used to prepare a new scaffold for bone tissue engineering. The adipose-derived mesenchymal stem cells (ADMSCs) were cultured on the fabricated scaffolds to examine their potential for cell support, proliferation, and osteogenic differentiation. (1) The electrospun nanofibers present a highly porous with interconnected pore structure. (2) There was no cytotoxicity of the prepared scaffolds towards ADMSCs. (3) The ADMSCs cultured on the PCL@PAN/OS scaffold present a higher level of biomineralization analyzed by calcium content and alizarin red S assays. (4) In addition, it shows the highest osteocalcin, ALP, and Runx2 gene expression. The excellent biological properties of the core–shell PCL@PAN/OS nanofibrous structure have been promising to have potential applications in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. C. Xu, P. Su, X. Chen, Y. Meng, W. Yu, A.P. Xiang, Y. Wang, Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 32, 1051–1058 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.068

    Article  Google Scholar 

  2. B. Sun, J. Li, W. Liu, B.M. Aqeel, H. El-Hamshary, S.S. Al-Deyab, X. Mo, Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iran. Polym. J. 24, 29–40 (2015). https://doi.org/10.1007/s13726-014-0297-9

    Article  Google Scholar 

  3. J. Venkatesan, S.-K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J. Biomed. Nanotechnol. 10, 3124–3140 (2014). https://doi.org/10.1166/jbn.2014.1893

    Article  Google Scholar 

  4. C. Yang, Q. Shao, Y. Han, Q. Liu, L. He, Q. Sun, S. Ruan, Fibers by electrospinning and their emerging applications in bone tissue engineering. Appl. Sci. 11, 9082 (2021). https://doi.org/10.3390/app11199082

    Article  Google Scholar 

  5. Y. Yu, S. Hua, M. Yang, Z. Fu, S. Teng, K. Niu, Q. Zhao, C. Yi, Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv. 6, 110557–110565 (2016). https://doi.org/10.1039/C6RA17718B

    Article  ADS  Google Scholar 

  6. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  Google Scholar 

  7. S.S. Liao, F.Z. Cui, W. Zhang, Q.L. Feng, Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. 69B, 158–165 (2004). https://doi.org/10.1002/jbm.b.20035

    Article  Google Scholar 

  8. M. Kandeel, Bioinformatics of thymidine metabolism in Trypanosoma evansi: exploring nucleoside deoxyribosyltransferase (NDRT) as a drug target. Trop. Biomed. 38, 311–317 (2021). https://doi.org/10.47665/tb.38.3.071

    Article  Google Scholar 

  9. M. Alquhaidan, M. Kandeel, Gene expression of multidrug-resistant ATP-binding cassette transporter (MDR1/ABCB1) in bovine mastitis. Trop. J. Pharm. Res. 17, 2335 (2019). https://doi.org/10.4314/tjpr.v17i12.3

    Article  Google Scholar 

  10. A. Gupta, S. Gupta, R. Mani, P. Durgapal, B. Goyal, D. Rajput, S. Rao, P. Dhar, M. Gupta, S. Kishore, R. Kant, Expression of Human epidermal growth factor receptor 2, Survivin, Enhancer of zeste homolog -2, Cyclooxygenase-2, p53 and p16 molecular markers in Gall bladder carcinoma. J. Carcinogen. 20, 7 (2021). https://doi.org/10.4103/jcar.JCar_4_21

    Article  Google Scholar 

  11. J. Li, H. Sun, D. Sun, Y. Yao, F. Yao, K. Yao, Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering. Carbohyd. Polym. 85, 885–894 (2011). https://doi.org/10.1016/j.carbpol.2011.04.015

    Article  Google Scholar 

  12. M. Khalili, A. Khalili, D.O. Bokov, M. Golmirzaei, M.S. Oleneva, N. Naghiaei, M. Radmehr, E. Esmaeili, Preparation and characterization of bi-layered polycaprolactone/polyurethane nanofibrous scaffold loaded with titanium oxide and curcumin for wound dressing applications. Appl. Phys. A 128, 497 (2022). https://doi.org/10.1007/s00339-022-05646-2

    Article  ADS  Google Scholar 

  13. M. Piran, M. Shiri, M. SoufiZomorrod, E. Esmaeili, M. SoufiZomorrod, N. VazifehShiran, H. Mahboudi, H. Daneshpazhouh, N. Dehghani, S. Hosseinzadeh, Electrospun triple-layered PLLA/gelatin. PRGF/PLLA scaffold induces fibroblast migration. J. Cell. Biochem. 120, 11441–11453 (2019). https://doi.org/10.1002/jcb.28422

    Article  Google Scholar 

  14. N. Fazeli, E. Arefian, S. Irani, A. Ardeshirylajimi, E. Seyedjafari, 3D-printed PCL scaffolds coated with nanobioceramics enhance osteogenic differentiation of stem cells. ACS Omega 6, 35284–35296 (2021). https://doi.org/10.1021/acsomega.1c04015

    Article  Google Scholar 

  15. R. Xue, Y. Qian, L. Li, G. Yao, L. Yang, Y. Sun, Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Res. Ther. 8, 148 (2017). https://doi.org/10.1186/s13287-017-0588-0

    Article  Google Scholar 

  16. M.-Y. Bai, F.-Y. Ku, J.-F. Shyu, T. Hayashi, C.-C. Wu, Evaluation of polyacrylonitrile nonwoven mats and silver-gold bimetallic nanoparticle-decorated nonwoven mats for potential promotion of wound healing in vitro and in vivo and bone growth in vitro. Polymers 13, 516 (2021). https://doi.org/10.3390/polym13040516

    Article  Google Scholar 

  17. Y. Altaher, M. Kandeel, Structure-activity relationship of anionic and cationic polyamidoamine (PAMAM) dendrimers against Staphylococcus aureus. J. Nanomater. 2022, 1–5 (2022). https://doi.org/10.1155/2022/4013016

    Article  Google Scholar 

  18. W.R. Kadhum, S.A.S. Al-Zuhairy, M.B.M. Mohamed, A.Y. Abdulrahman, M.M. Kadhim, Z. Alsadoon, T.C. Teoh, A nanotechnological approach for enhancing the topical drug delivery by newly developed liquid crystal formulations. Int. J. Drug Deliv. Technol. 11, 716–720 (2021). https://doi.org/10.25258/ijddt.11.3.11

    Article  Google Scholar 

  19. S.A.S. Al-Zuhairy, W.R. Kadhum, M. Alhijjaj, M.M. Kadhim, A.S. Al-Janabi, A.W. Salman, H.K.R. Al-Sharifi, A.A. Khadom, Development and evaluation of biocompatible topical petrolatum-liquid crystal formulations with enhanced skin permeation properties. J. Oleo Sci. 71, ess21344 (2022). https://doi.org/10.5650/jos.ess21344

    Article  Google Scholar 

  20. W.R. Kadhum, G.L. See, M. Alhijjaj, M.M. Kadhim, F.J. Arce, A.S. Al-Janabi, R.R. Al-Rashidi, A.A. Khadom, Evaluation of the skin permeation-enhancing abilities of newly developed water-soluble self-assembled liquid crystal formulations based on hexosomes. Crystals 12, 1238 (2022). https://doi.org/10.3390/cryst12091238

    Article  Google Scholar 

  21. M. Seyyedi, A. Molajou, Nanohydroxyapatite loaded-acrylated polyurethane nanofibrous scaffolds for controlled release of paclitaxel anticancer drug, J. Res. Sci. Eng. Technol. 9, 50–61 (2021). http://journals.researchub.org/index.php/jrset/article/view/1213.

  22. E. Esmaeili, M.A. Ghiass, M. Vossoughi, M. Soleimani, Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci. Rep. 7, 194 (2017). https://doi.org/10.1038/s41598-017-00268-8

    Article  ADS  Google Scholar 

  23. M. Sabet, M. Salavati-Niasari, E. Esmaeili, Synthesis of zinc sulfide nanostructures with different sulfur sources via mild hydrothermal route: investigation of crystal phase and morphology. J. Inorg. Organomet. Polym Mater. 26, 738–743 (2016). https://doi.org/10.1007/s10904-016-0374-y

    Article  Google Scholar 

  24. E. Esmaeili, M. Sabet, M. Salavati-Niasari, Z. Zarghami, S. Bagheri, Effect of sulfur source on cadmium sulfide nanostructures morphologies via simple hydrothermal route. J. Clust. Sci. 27, 351–360 (2016). https://doi.org/10.1007/s10876-015-0934-2

    Article  Google Scholar 

  25. R. Didekhani, M.R. Sohrabi, E. Seyedjafari, M. Soleimani, H. Hanaee-Ahvaz, Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells. Biologicals 54, 33–38 (2018). https://doi.org/10.1016/j.biologicals.2018.04.006

    Article  Google Scholar 

  26. S. Dorozhkin, Calcium orthophosphate-based bioceramics. Materials. 6, 3840–3942 (2013). https://doi.org/10.3390/ma6093840

    Article  ADS  Google Scholar 

  27. W. Luo, S. Zhang, Y. Lan, C. Huang, C. Wang, X. Lai, H. Chen, N. Ao, 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering. Mater. Res. Express. 5, 045403 (2018). https://doi.org/10.1088/2053-1591/aab916

    Article  ADS  Google Scholar 

  28. G.-L. Yoon, B.-T. Kim, B.-O. Kim, S.-H. Han, Chemical–mechanical characteristics of crushed oyster-shell. Waste Manage. 23, 825–834 (2003). https://doi.org/10.1016/S0956-053X(02)00159-9

    Article  Google Scholar 

  29. E. Razeghian, R. Margiana, S. Chupradit, D.O. Bokov, W.K. Abdelbasset, F. Marofi, S. Shariatzadeh, F. Tosan, M. Jarahian, Mesenchymal stem/stromal cells as a vehicle for cytokine delivery: an emerging approach for tumor immunotherapy. Front. Med. (2021). https://doi.org/10.3389/fmed.2021.721174

    Article  Google Scholar 

  30. R. Margiana, A. Markov, A.O. Zekiy, M.U. Hamza, K.A. Al-Dabbagh, S.H. Al-Zubaidi, N.M. Hameed, I. Ahmad, R. Sivaraman, H.H. Kzar, M.E. Al-Gazally, Y.F. Mustafa, H. Siahmansouri, Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res. Ther. 13, 366 (2022). https://doi.org/10.1186/s13287-022-03054-0

    Article  Google Scholar 

  31. S.A. Jasim, A.V. Yumashev, W.K. Abdelbasset, R. Margiana, A. Markov, W. Suksatan, B. Pineda, L. Thangavelu, S.H. Ahmadi, Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res. Ther. 13, 101 (2022). https://doi.org/10.1186/s13287-022-02782-7

    Article  Google Scholar 

  32. H. Huldani, R. Margiana, F. Ahmad, M.J.C. Opulencia, M.J. Ansari, D.O. Bokov, N.N. Abdullaeva, H. Siahmansouri, Immunotherapy of inflammatory bowel disease (IBD) through mesenchymal stem cells. Int. Immunopharmacol. 107, 108698 (2022). https://doi.org/10.1016/j.intimp.2022.108698

    Article  Google Scholar 

  33. R. Margiana, R.A. Aman, J.A. Pawitan, A.A. Jusuf, N. Ibrahim, H. Wibowo, The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats. Electron. J. Gen. Med. 16, 171 (2019). https://doi.org/10.29333/ejgm/115468

    Article  Google Scholar 

  34. M. Khalili, H. Keshvari, R. Imani, A.N. Sohi, E. Esmaeili, M. Tajabadi, Study of osteogenic potential of electrospun <scp>PCL</scp> incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. Polym. Adv. Technol. (2021). https://doi.org/10.1002/pat.5555

    Article  Google Scholar 

  35. E. Esmaeili, Z. Malaie-Balasi, M. Kabiri, A. Khojasteh, F. Mohamadyar-Toupkanlou, N. Sadeghzadeh, Z. Zarei-Behjani, S. Hosseinzadeh, Optimization of nanoclay/polyacrylonitrile scaffold using response surface method for bone differentiation of human mesenchymal stem cells. ASAIO J (2021). https://doi.org/10.1097/MAT.0000000000001355

    Article  Google Scholar 

  36. W. Liu, S. Thomopoulos, Y. Xia, Electrospun nanofibers for regenerative medicine. Adv. Healthc. Mater. 1, 10–25 (2012). https://doi.org/10.1002/adhm.201100021

    Article  Google Scholar 

  37. E. Esmaeili, T. Eslami-Arshaghi, S. Hosseinzadeh, E. Elahirad, Z. Jamalpoor, S. Hatamie, M. Soleimani, The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: antimicrobial performance and cutaneous wound healing. Int. J. Biol. Macromol. 152, 418–427 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.295

    Article  Google Scholar 

  38. J. Dolgin, S.N. Hanumantharao, S. Farias, C.G. Simon, S. Rao, Mechanical properties and morphological alterations in fiber-based scaffolds affecting tissue engineering outcomes. Fibers. 11, 39 (2023). https://doi.org/10.3390/fib11050039

    Article  Google Scholar 

  39. B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, O. Krim, Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World J. Environ. Eng. 3, 95–110 (2015). https://doi.org/10.1269/wjee-3-4-1

    Article  Google Scholar 

  40. J. Li, S. Su, L. Zhou, V. Kundrát, A.M. Abbot, F. Mushtaq, D. Ouyang, D. James, D. Roberts, H. Ye, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J. Appl. Phys. 113, 024313 (2013). https://doi.org/10.1063/1.4774218

    Article  ADS  Google Scholar 

  41. S. An, Y. Gao, J. Ling, X. Wei, Y. Xiao, Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J. Mater. Sci. Mater. Med. 23, 789–795 (2012). https://doi.org/10.1007/s10856-011-4531-0

    Article  Google Scholar 

  42. T. Narai, R. Watase, Y. Nakayama, I. Kodani, T. Inoue, K. Kokura, Establishment of human immortalized mesenchymal stem cells lines for the monitoring and analysis of osteogenic differentiation in living cells. Heliyon 6, e05398 (2020). https://doi.org/10.1016/j.heliyon.2020.e05398

    Article  Google Scholar 

  43. Y.-T. Tsao, Y.-J. Huang, H.-H. Wu, Y.-A. Liu, Y.-S. Liu, O. Lee, Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int. J. Mol. Sci. 18, 159 (2017). https://doi.org/10.3390/ijms18010159

    Article  Google Scholar 

  44. T. Komori, Regulation of osteoblast and odontoblast differentiation by RUNX2. J. Oral Biosci. 52, 22–25 (2010). https://doi.org/10.2330/joralbiosci.52.22

    Article  Google Scholar 

  45. N. Andalib, M. Kehtari, E. Seyedjafari, N. Motamed, M.M. Matin, In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells, Cell and Tissue. Banking 22, 467–477 (2021). https://doi.org/10.1007/s10561-020-09894-5

    Article  Google Scholar 

  46. R.J. Miron, Y.F. Zhang, Osteoinduction: a review of old concepts with new standards. J. Dent. Res. 91, 736–744 (2012). https://doi.org/10.1177/0022034511435260

    Article  Google Scholar 

  47. Y. Shen, S. Yang, J. Liu, H. Xu, Z. Shi, Z. Lin, X. Ying, P. Guo, T. Lin, S. Yan, Q. Huang, L. Peng, Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl. Mater. Interfaces. 6, 12177–12188 (2014). https://doi.org/10.1021/am501448t

    Article  Google Scholar 

Download references

Acknowledgements

Hereby, we extend our gratitude to the stem cell technology research center. The authors are grateful to Dr. Iman Rad and Mr. Jafar Meghdadi for their technical support.

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Contributions

EE: conceptualization, project administration, supervision, resources, formal analysis, validation, writing. RD: investigation, methodology, validation, visualization. ZG: investigation, methodology, writing—original draft. MK: investigation, methodology, writing—original draft.

Corresponding author

Correspondence to Elaheh Esmaeili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, E., Didekhani, R., Gohari, Z. et al. Fabrication and characterization of PCL@PAN nanofibrous scaffold containing nature-derived oyster shell for bone tissue engineering applications. Appl. Phys. A 129, 670 (2023). https://doi.org/10.1007/s00339-023-06943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06943-0

Keywords

Navigation