Skip to main content

Advertisement

Log in

Efficient carrier generation and transport of CsPb1-xMnx(Br/Cl)3 quantum dots in high-performance carbon-based perovskite solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, CsPb1-xMnx(Br/Cl)3 quantum dots with high photoluminescence intensity are reported. Through doping Mn2+, the defects existing in the lattice structure are reduced and the bond angle between x and y directions in one-unit cell changes from 120° to 90°. With the increase in Mn content, the valence band of the quantum dots decreases from − 3.54 to − 3.96 eV, which is closer to the 4T1 energy level of Mn2+. The photoluminescence quantum yield confirms the enhancement of its characteristic luminescence as Mn content increases. Furthermore, CsPb1-xMnx(Br/Cl)3 quantum dots are introduced into the active layer of carbon-based perovskite solar cells (PSCs). Contributed by its characteristic luminescence enhancement and defect passivation, the generation of photogenerated carriers is promoted and the carrier transport in the perovskite layer is improved. Steady-state photoluminescence and incident photon-to-electron conversion efficiency confirm the promotion of quantum dots on photogenerated carrier generation and electron extraction efficiency. Meanwhile, due to the tunable energy bands of quantum dots, the optimized cells have better energy band alignment, which contributes to the improvement of open circuit voltage. Finally, the power conversion efficiency of PSCs reaches 14.76%, which is 15.76% higher than that of the reference sample of 12.75%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.M. Makhlouf, H. Khallaf, M.M. Shehata, Appl. Phys. A 128, 98 (2022). https://doi.org/10.1007/s00339-021-05215-z

    Article  ADS  Google Scholar 

  2. A.B. Roy, K.V. Kumar, M. Saha, Appl. Phys. A 127, 119 (2021). https://doi.org/10.1007/s00339-020-04208-8

    Article  ADS  Google Scholar 

  3. Y. Ozen, Appl. Phys. A 126, 632 (2020). https://doi.org/10.1007/s00339-020-03808-8

    Article  ADS  Google Scholar 

  4. N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu, Renew Sust Energ Rev 59, 726 (2016). https://doi.org/10.1016/j.rser.2015.12.268

    Article  Google Scholar 

  5. A.M. Elnaggar, M.M. Osman, A.Q. Alanazi, M.B. Mohamed, M.A. Edbah, A.M. Aldhafiri, Z.K. Heiba, H.A. Albrithen, Appl. Phys. A 128, 378 (2022). https://doi.org/10.1007/s00339-022-05527-8

    Article  ADS  Google Scholar 

  6. T.M.W.J. Bandara, J.M.C. Hansadi, F. Bella, Ionics 28, 2563 (2022). https://doi.org/10.1007/s11581-022-04582-8

    Article  Google Scholar 

  7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc 131, 6050 (2009). https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  8. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y. Kim, C.S. Moon, N.J. Jeon, J.P.C. Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590, 587 (2021). https://doi.org/10.1038/s41586-021-03285-w

    Article  ADS  Google Scholar 

  9. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Gratzel, J.Y. Kim, Nature 592, 381 (2021). https://doi.org/10.1038/s41586-021-03406-5

    Article  ADS  Google Scholar 

  10. X. Tian, F. You, A.C.S. Sustain, Chem. Eng. 9, 11247 (2021). https://doi.org/10.1021/acssuschemeng.1c03927

    Article  Google Scholar 

  11. N. Pirrone, F. Bella, S. Hernandez, Green Chem. 24, 5379 (2022). https://doi.org/10.1039/D2GC00292B

    Article  Google Scholar 

  12. Z. Li, X. Liu, C. Zuo, W. Yang, X. Fang, Adv. Mater. 33, 2103010 (2021). https://doi.org/10.1002/adma.202103010

    Article  Google Scholar 

  13. F. Cao, Z. Li, X. Liu, Z. Shi, X. Fang, Adv. Funct. Mater. 2206151 (2022) https://doi.org/10.1002/adfm.202206151

  14. L. Fagiolari, M. Sampo, A. Lamberti, J. Amici, C. Francia, S. Bodoardo, F. Bella, Energy Stor. Mater. 51, 400 (2022). https://doi.org/10.1016/j.ensm.2022.06.051

    Article  Google Scholar 

  15. S. Kang, S. Park, S. Park, H. Kwon, J. Lee, K.H. Hong, Y.J. Pu, J. Park, Mater. Today. Energy 21, 100749 (2021). https://doi.org/10.1016/j.mtener.2021.100749

    Article  Google Scholar 

  16. D. Sun, K. Zhang, S. Mei, J. Xu, Y. Jiang, X. Xiao, Y. Zhou, F. Mei, J. Phys. D Appl. Phys. 54, 214002 (2021). https://doi.org/10.1088/1361-6463/abe502

    Article  ADS  Google Scholar 

  17. H.P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J.H. He, Adv. Mater. 33, 2003309 (2021). https://doi.org/10.1002/adma.202003309

    Article  Google Scholar 

  18. N.S. Kumar, K.C.B. Naidu, J. Mater. 7, 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  19. Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li, S.F. Liu, ACS Energy Lett. 2, 1479 (2017). https://doi.org/10.1021/acsenergylett.7b00375

    Article  Google Scholar 

  20. S.R. Ali, M.M. Faisal, K.C. Sanal, M.W. Iqbal, Sol. Energy 221, 254 (2021). https://doi.org/10.1016/j.solener.2021.04.040

    Article  ADS  Google Scholar 

  21. D.H. Nguyen, J.Y. Sun, C.Y. Lo, J.M. Liu, W.S. Tsai, M.H. Li, S.J. Yang, C.C. Lin, S.D. Tzeng, Y.R. Ma, M.Y. Lin, C.C. Lai, Adv. Mater. 33, 2170092 (2021). https://doi.org/10.1002/adma.202170092

    Article  Google Scholar 

  22. D. Chen, D. Huang, M. Yang, K. Xu, J. Hu, S. Liang, H. Zhu, Nano Res. 15, 644 (2021). https://doi.org/10.1007/s12274-021-3538-1

    Article  ADS  Google Scholar 

  23. M.A. Padhiar, M. Wang, Y. Ji, Y. Zhou, H. Qiu, Z. Yang, Nano Express 1, 030033 (2020). https://doi.org/10.1088/2632-959x/abcf8e

    Article  ADS  Google Scholar 

  24. D.J. Kubicki, D. Prochowicz, A. Pinon, G. Stevanato, A. Hofstetter, S.M. Zakeeruddin, M. Grätzel, L. Emsley, J. Mater. Chem. A 7, 2326 (2019). https://doi.org/10.1039/C8TA11457A

    Article  Google Scholar 

  25. P. Wang, B. Dong, Z. Cui, R. Gao, G. Su, W. Wang, L. Cao, RSC Adv. 8, 1940 (2018). https://doi.org/10.1039/C7RA13306E

    Article  ADS  Google Scholar 

  26. A.H. Hill, C.L. Kennedy, E.S. Massaro, E.M. Grumstrup, J. Phys. Chem. Lett. 9, 2808 (2018). https://doi.org/10.1021/acs.jpclett.8b00652

    Article  Google Scholar 

  27. Y. Ma, Y. Zhang, H. Zhang, H. Lv, R. Hu, W. Liu, S. Wang, M. Jiang, L. Chu, J. Zhang, X.A. Li, R. Xia, W. Huang, Appl. Surf. Sci. 547, 149117 (2021). https://doi.org/10.1016/j.apsusc.2021.149117

    Article  Google Scholar 

  28. C. Zhang, Z. He, X. Luo, R. Meng, M. Chen, H. Lu, Y. Yang, Nanoscale Res. Lett. 16, 74 (2021). https://doi.org/10.1186/s11671-021-03533-y

    Article  ADS  Google Scholar 

  29. J. Zhu, X. Yang, Y. Zhu, Y. Wang, J. Cai, J. Shen, L. Sun, C. Li, J. Phys. Chem. Lett. 8, 4167 (2017). https://doi.org/10.1021/acs.jpclett.7b01820

    Article  Google Scholar 

  30. S. Liu, G. Shao, L. Ding, J. Liu, W. Xiang, X. Liang, Chem. Eng. J. 361, 937 (2019). https://doi.org/10.1016/j.cej.2018.12.147

    Article  Google Scholar 

  31. Y. Zhao, C. Shen, L. Ding, J. Liu, W. Xiang, X. Liang, Opt. Mater. 107, 110046 (2020). https://doi.org/10.1016/j.optmat.2020.110046

    Article  Google Scholar 

  32. F. Schmitz, N. Lago, L. Fagiolari, J. Burkhart, A. Cester, A. Polo, M. Prato, G. Meneghesso, S. Gross, F. Bella, F. Lamberti, T. Gatti, Chemsuschem (2022). https://doi.org/10.1002/cssc.202201590

    Article  Google Scholar 

  33. K.P. Goetz, A.D. Taylor, Y.J. Hofstetter, Y. Vaynzof, A.C.S. Appl, Mater. Interfaces 13, 1 (2021). https://doi.org/10.1021/acsami.0c17269

    Article  Google Scholar 

  34. M. He, Y. Cheng, L. Shen, C. Shen, H. Zhang, W. Xiang, X. Liang, Appl. Surf. Sci. 448, 400 (2018). https://doi.org/10.1016/j.apsusc.2018.04.098

    Article  ADS  Google Scholar 

  35. W. Chen, T. Shi, J. Du, Z. Zang, Z. Yao, M. Li, K. Sun, W. Hu, Y. Leng, X. Tang, A.C.S. Appl, Mater. Interfaces 10, 43978 (2018). https://doi.org/10.1021/acsami.8b14046

    Article  Google Scholar 

  36. A. Nag, R. Cherian, P. Mahadevan, A.V. Gopal, A. Hazarika, A. Mohan, A.S. Vengurlekar, D.D. Sarma, J. Phys. Chem. C 114, 18323 (2010). https://doi.org/10.1021/jp105688w

    Article  Google Scholar 

  37. D. Rossi, D. Parobek, Y. Dong, D.H. Son, J. Phys. Chem. C 121, 17143 (2017). https://doi.org/10.1021/acs.jpcc.7b06182

    Article  Google Scholar 

  38. A.K. Guria, S.K. Dutta, S.D. Adhikari, N. Pradhan, ACS Energy Lett. 2, 1014 (2017). https://doi.org/10.1021/acsenergylett.7b00177

    Article  Google Scholar 

  39. W. Wang, J. Li, G. Duan, H. Zhou, Y. Lu, T. Yan, B. Cao, Z. Liu, J. Alloys Compd. 821, 153568 (2020). https://doi.org/10.1016/j.jallcom.2019.153568

    Article  Google Scholar 

  40. V. Vlaskin, N. Janssen, J. Rijssel, R. Beaulac, D. Gamelin, Nano lett. 10, 3670 (2010). https://doi.org/10.1021/nl102135k

    Article  ADS  Google Scholar 

  41. W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J.M. Pietryga, V.I. Klimov, J. Am. Chem. Soc. 138, 14954 (2016). https://doi.org/10.1021/jacs.6b08085

    Article  Google Scholar 

  42. S. Mahamuni, A.D. Lad, S. Patole, J. Phys. Chem. C 112, 2271 (2018). https://doi.org/10.1021/jp076834m

    Article  Google Scholar 

  43. L. Shi, Y. Huang, H.J. Seo, J. Phys. Chem. A 114, 6927 (2010). https://doi.org/10.1021/jp101772z

    Article  Google Scholar 

  44. W. Wu, W. Liu, Q. Wang, Q. Han, Q. Yang, J. Alloys Compd. 787, 165 (2019). https://doi.org/10.1016/j.jallcom.2019.02.032

    Article  Google Scholar 

  45. S. Chen, M.S. Zaeimian, J.H.S.K. Monteiro, J. Zhao, A.G. Mamalis, A. De Bettencourt-Dias, X. Zhu, J. Alloys Compd. 725, 1077 (2017). https://doi.org/10.1016/j.jallcom.2017.07.262

    Article  Google Scholar 

  46. M. He, Y. Cheng, L. Shen, H. Zhang, C. Shen, W. Xiang, X. Liang, J. Am. Ceram. Soc. 102, 1090 (2018). https://doi.org/10.1111/jace.15945

    Article  Google Scholar 

  47. M. Rodová, J. Brožek, K. Knížek, K. Nitsch, J. Therm. Anal. Calorim. 71, 667 (2003). https://doi.org/10.1023/A:1022836800820

    Article  Google Scholar 

  48. M. De Bastiani, I. Dursun, Y. Zhang, B.A. Alshankiti, X.H. Miao, J. Yin, E. Yengel, E. Alarousu, B. Turedi, J.M. Almutlaq, M.I. Saidaminov, S. Mitra, I. Gereige, A. AlSaggaf, Y. Zhu, Y. Han, I.S. Roqan, J.L. Bredas, O.F. Mohammed, O.M. Bakr, Chem. Mater. 29, 7108 (2017). https://doi.org/10.1021/acs.chemmater.7b02415

    Article  Google Scholar 

  49. J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016). https://doi.org/10.1021/acs.chemrev.6b00136

    Article  Google Scholar 

  50. W. Travis, E. Glover, H. Bronstein, D. Scanlon, R. Palgrave, Chem. Sci. 7, 4548 (2016). https://doi.org/10.1039/C5SC04845A

    Article  Google Scholar 

  51. C. Sun, L. Wang, S. Su, Z. Gao, H. Wu, Z.H. Zhang, W. Bi, Nanotechnology 31, 065603 (2020). https://doi.org/10.1088/1361-6528/ab5074

    Article  ADS  Google Scholar 

  52. F. Li, Z. Xia, C. Pan, Y. Gong, L. Gu, Q. Liu, J.Z. Zhang, A.C.S. Appl, Mater. Interfaces 10, 11739 (2018). https://doi.org/10.1021/acsami.7b18750

    Article  Google Scholar 

  53. Z. Liu, Y. Zhang, Y. Fan, Z. Chen, Z. Tang, J. Zhao, Y. Lv, J. Lin, X. Guo, J. Zhang, X. Liu, A.C.S. Appl, Mater. Interfaces 10, 13053 (2018). https://doi.org/10.1021/acsami.7b18964

    Article  Google Scholar 

  54. S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, X. Chen, J. Am. Chem. Soc. 139, 11443 (2017). https://doi.org/10.1021/jacs.7b04000

    Article  Google Scholar 

  55. L. Brus, Appl. Phys. A 53, 465 (1991). https://doi.org/10.1007/BF00331535

    Article  ADS  Google Scholar 

  56. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, T.O. Mason, Materials 3, 4892 (2010). https://doi.org/10.3390/ma3114892

    Article  ADS  Google Scholar 

  57. B. De Darwent, Bond Dissociation Energies in Simple Molecules, (U.S. National Bureau of Standards, Gaithersburg, MD, 1970)

  58. R. Wang, C. Wu, Y. Hu, J. Li, P. Shen, Q. Wang, L. Liao, L. Liu, S. Duhm, A.C.S. Appl, Mater. Interfaces 9, 7859 (2017). https://doi.org/10.1021/acsami.7b00312

    Article  Google Scholar 

  59. Y. Liu, F. Zhao, J. Li, Y. Li, J.A. McLeod, L. Liu, J. Mater. Chem. A 5, 20005 (2017). https://doi.org/10.1039/C7TA05852G

    Article  Google Scholar 

Download references

Acknowledgements

Thanks Mingyu Li for revising the language of the article. Thanks Shuhan Li for providing the laboratory.

Funding

National Nature Science Foundation of China (NSFC) (11704293, 11974266) and the Fundamental Research Funds for the Central University under Grant WUT (2020IB022).

Author information

Authors and Affiliations

Authors

Contributions

CL and YY participated in the experiment design and carried out the experiments. CL, HZ, MC, HL and YY participated in the analysis of data. CL and YY designed the experiments and testing methods. CL, HL and YY carried out the writing of the manuscript.

Corresponding authors

Correspondence to Mengwei Chen or Yingping Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

This article does not contain any code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, M., Zhou, H. et al. Efficient carrier generation and transport of CsPb1-xMnx(Br/Cl)3 quantum dots in high-performance carbon-based perovskite solar cells. Appl. Phys. A 128, 1081 (2022). https://doi.org/10.1007/s00339-022-06196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06196-3

Keywords

Navigation