Skip to main content
Log in

A review of textile dye-sensitized solar cells for wearable electronics

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Over the last few decades, dye-sensitized solar cells (DSSCs) have gained much consideration. Consequently, textile DSSCs are being looked at for their sustainability, flexibility, pliability, and lightweight properties, as well as the possibility of using large-scale industrial manufacturing methods (e.g., weaving and screen printing). These are important features in fabricating not only wearable electronic devices, but also for the large-scale harnessing of solar power from canopies, sunshades, greenhouses, covers, and other applications. Textile DSSCs are mainly of two types, i.e., yarn-type and planar-type. Electrodes in the shape of yarn or wires can be produced by coating and depositing active material onto polymeric or metallic fibers, yarns, or wires. By intertwining or twisting two yarns, namely the photo-electrode (PE) and counter-electrode (CE), a yarn-type DSSC can be formed. Instead, planar-type DSSCs can be produced by interlacing photovoltaic yarns through standard textile manufacturing processes. Alternatively, planar-type DSSCs can be produced by applying conducting layers to the planar textile structure. This review presents a concise summary of various textile structures, materials, fabrication methods, and factors affecting the performance of these two types of textile DSSCs. This also provides the challenges and limitations of each method, thus highlighting areas for potential future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

1D:

one-dimensional

3D:

three-dimensional

BSA:

bovine serum albumin

CE:

counter-electrode

CL:

compact layer

CPE:

constant phase element

CS-CNTs:

core-sheath carbon nanotubes

CVD:

chemical vapor deposition

DSSC:

dye-sensitized solar cell

E-MWCNTs:

enzyme-dispersed multiwall carbon nanotubes

FF:

fill factor

FDSSC:

flexible dye-sensitized solar cell

FTO:

fluorine-doped SnO2

GCF:

graphene-coated fabric

GON:

graphene oxide nanosheet

ITO:

indium-doped SnO2

J sc :

short-circuit current density

MR:

microridge

MWCNTs:

multiwalled carbon nanotubes

NC:

nanocrystalline

NPs:

nanoparticles

NRs:

nanorods

NTs:

nanotubes

NSs:

nanosheets

NWs:

nanowires

PCE:

power conversion efficiency

PE:

photoelectrode

PET:

polyethylene terephthalate

PU:

poly(urethane)

PV:

photovoltaic

R 1 :

charge transfer resistance at the CE/electrolyte interface

R 2 :

charge transfer resistance at the PE/electrolyte interface

R s :

Ohmic resistance

SS:

stainless steel

TCO:

transparent conducting oxide

TMCA:

titanium micron-core array

V oc :

open-circuit voltage

V pp :

peak voltage separation

W s :

Warburg’s resistance related to the diffusion of the redox couple in the electrolyte

References

  1. Dupont E, Koppelaar R, Jeanmart H (2020) Global available solar energy under physical and energy return on investment constraints. Appl Energy 257:113968

    Article  Google Scholar 

  2. Bandara T, Ratnasekera J (2020) Polymer electrolytes for quantum dot-sensitized solar cells (QDSSCs) and challenges. In: Polymer Electrolytes: Characterization Techniques and Energy Applications, pp 299–337

    Chapter  Google Scholar 

  3. Popoola IK, Gondal MA, Qahtan TF (2018) Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability. Renew Sust Energ Rev 82:3127–3151

    Article  CAS  Google Scholar 

  4. Sharma S et al (2017) Dye sensitized solar cells: from genesis to recent drifts. Renew Sust Energ Rev 70:529–537

    Article  CAS  Google Scholar 

  5. Ali N et al (2016) Advances in nanostructured thin film materials for solar cell applications. Renew Sust Energ Rev 59:726–737

    Article  CAS  Google Scholar 

  6. Green MA et al (2020) Solar cell efficiency tables (version 56). Prog Photovolt Res Appl 28(7):629–638

    Article  Google Scholar 

  7. Arumugam S et al (2016) Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. J Mater Chem A 4(15):5561–5568

    Article  CAS  Google Scholar 

  8. Bella F et al (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44(11):3431–3473

    Article  CAS  PubMed  Google Scholar 

  9. Bella F (2015) Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochim Acta 175:151–161

    Article  CAS  Google Scholar 

  10. Teo LP, Buraidah MH, Arof AK (2020) Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics 26(9):4215–4238

  11. Boro B et al (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sust Energ Rev 81:2264–2270

    Article  CAS  Google Scholar 

  12. Schubert MB, Werner JH (2006) Flexible solar cells for clothing. Mater Today 9(6):42–50

    Article  CAS  Google Scholar 

  13. Wilson JI, Mather RR (2019) Photovoltaic solar textiles. In Multidisciplinary Digital Publishing Institute Proceedings

  14. Cho SH et al (2019) Plasmonically engineered textile polymer solar cells for high-performance, wearable photovoltaics. ACS Appl Mater Interfaces 11(23):20864–20872

    Article  CAS  PubMed  Google Scholar 

  15. Kuhlmann JC, de Moor HHC, Driesser MHB, Bottenberg E, Spee CIMA et al (2018) Development of a universal solar energy harvesting system suited for textile integration including flexible energy storage. J Fashion Technol Textile Eng. https://doi.org/10.4172/2329-9568.S4-012

  16. O'regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  17. Miettunen K et al (2018) Recent progress in flexible dye solar cells. Wiley Interdisciplinary Rev Energy Environ 7(5):e302

    Article  CAS  Google Scholar 

  18. Liu J et al (2019) Flexible printed monolithic-structured solid-state dye sensitized solar cells on woven glass fibre textile for wearable energy harvesting applications. Sci Rep 9(1):1–11

    Google Scholar 

  19. Bandara T et al (2015) Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance. J Appl Electrochem 45(4):289–298

    Article  CAS  Google Scholar 

  20. Yun MJ et al (2014) Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth. Sci Rep 4(1):1–6

    Google Scholar 

  21. Zainudin S, Abdullah H, Markom M (2019) Electrochemical studies of tin oxide based-dye-sensitized solar cells (DSSC): a review. J Mater Sci Mater Electron 30(6):5342–5356

    Article  CAS  Google Scholar 

  22. Vittal R, Ho K-C (2017) Zinc oxide based dye-sensitized solar cells: a review. Renew Sust Energ Rev 70:920–935

    Article  CAS  Google Scholar 

  23. Ranasinghe C et al (2015) Tin oxide based dye-sensitized solid-state solar cells: surface passivation for suppression of recombination. Mater Sci Semicond Process 40:890–895

    Article  CAS  Google Scholar 

  24. Tennakone K et al (1999) Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite and TiO2 films with a polymer electrolyte. Chem Mater 11(9):2474–2477

    Article  CAS  Google Scholar 

  25. Bandara T et al (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renew Sust Energ Rev 103:282–290

    Article  CAS  Google Scholar 

  26. Pugliese D et al (2014) TiO2 nanotubes as flexible photoanode for back-illuminated dye-sensitized solar cells with hemi-squaraine organic dye and iodine-free transparent electrolyte. Org Electron 15(12):3715–3722

    Article  CAS  Google Scholar 

  27. Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177(1):347–414

    Article  CAS  Google Scholar 

  28. Al-Alwani MA et al (2016) Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew Sust Energ Rev 65:183–213

    Article  CAS  Google Scholar 

  29. Nishshanke GBMMM, Thilakarathna BDKK, Albinsson I, Mellander BE, Bandara TMWJ (2021) Multi-layers of TiO2 nanoparticles in the photoelectrode and binary iodides in the gel polymer electrolyte based on poly (ethylene oxide) to improve quasi solid-state dye-sensitized solar cells. J Solid State Electrochem 25(2):707–720

  30. Fazli F et al (2017) Dye-sensitized solar cell using pure anatase TiO2 annealed at different temperatures. Optik 140:1063–1068

    Article  CAS  Google Scholar 

  31. Carnie MJ et al (2013) Ultra-fast sintered TiO2 films in dye-sensitized solar cells: phase variation, electron transport and recombination. J Mater Chem A 1(6):2225–2230

    Article  CAS  Google Scholar 

  32. Zhou H et al (2013) Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells. J Mater Chem A 1(12):3932–3937

    Article  CAS  Google Scholar 

  33. Fan X et al (2014) Role of interfacial strain in fiber-shaped solar cell based on TiO2 nanotube arrays. J Nanosci Nanotechnol 14(9):7111–7116

    Article  CAS  PubMed  Google Scholar 

  34. Hagfeldt A et al (2004) A system approach to molecular solar cells. Coord Chem Rev 248(13-14):1501–1509

    Article  CAS  Google Scholar 

  35. Balasingam SK, Kang MG, Jun Y (2013) Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. Chem Commun 49(98):11457–11475

    Article  CAS  Google Scholar 

  36. Hashmi G et al (2011) Review of materials and manufacturing options for large area flexible dye solar cells. Renew Sust Energ Rev 15(8):3717–3732

    Article  CAS  Google Scholar 

  37. Brown T et al (2014) Progress in flexible dye solar cell materials, processes and devices. J Mater Chem A 2(28):10788–10817

    Article  CAS  Google Scholar 

  38. Lind AHN, Mather RR, Wilson JI (2015) Input energy analysis of flexible solar cells on textile. IET Renew Power Generation 9(5):514–519

    Article  Google Scholar 

  39. Yun MJ et al (2016) Monolithic-structured single-layered textile-based dye-sensitized solar cells. Sci Rep 6(1):1–8

    Article  CAS  Google Scholar 

  40. Chae Y et al (2013) All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires. Mater Sci Eng B 178(17):1117–1123

    Article  CAS  Google Scholar 

  41. Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Article  CAS  PubMed  Google Scholar 

  42. Yang Z et al (2014) Stretchable, wearable dye-sensitized solar cells. Adv Mater 26(17):2643–2647

    Article  CAS  PubMed  Google Scholar 

  43. Yun MJ et al (2015) Insertion of dye-sensitized solar cells in textiles using a conventional weaving process. Sci Rep 5(1):1–8

    Article  Google Scholar 

  44. Kakiage K et al (2011) Application of micro-metal textile for flexible dye-sensitized solar cell. In Key Engineering Materials. Trans Tech Publ

  45. Chai Z et al (2016) Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10):9201–9207

    Article  CAS  PubMed  Google Scholar 

  46. Zhang N et al (2016) A wearable all-solid photovoltaic textile. Adv Mater 28(2):263–269

    Article  PubMed  CAS  Google Scholar 

  47. Tennakone K et al (1995) A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol 10(12):1689

    Article  Google Scholar 

  48. Ling CK et al (2020) A short review of iodide salt usage and properties in dye sensitized solar cell application: single vs binary salt system. Sol Energy 206:1033–1038

    Article  CAS  Google Scholar 

  49. Kumara G et al (2002) Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir 18(26):10493–10495

    Article  CAS  Google Scholar 

  50. Perera V, Tennakone K (2003) Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Sol Energy Mater Sol Cells 79(2):249–255

    Article  CAS  Google Scholar 

  51. Quintana M et al (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041

    Article  CAS  Google Scholar 

  52. Bendall JS et al (2011) An efficient DSSC based on ZnO nanowire photo-anodes and a new D-π-A organic dye. Energy Environ Sci 4(8):2903–2908

    Article  CAS  Google Scholar 

  53. Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2(1):19–34

    Article  CAS  Google Scholar 

  54. Greene LE et al (2006) Solution-grown zinc oxide nanowires. Inorg Chem 45(19):7535–7543

    Article  CAS  PubMed  Google Scholar 

  55. Sohn JI et al (2010) Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett 10(11):4316–4320

    Article  CAS  PubMed  Google Scholar 

  56. Elias J et al (2010) Hollow urchin-like ZnO thin films by electrochemical deposition. Adv Mater 22(14):1607–1612

    Article  CAS  PubMed  Google Scholar 

  57. Horiuchi H et al (2003) Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3− Zn2+) aggregate formation. J Phys Chem B 107(11):2570–2574

    Article  CAS  Google Scholar 

  58. Chen J et al (2016) Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy 1(10):1–8

    Article  CAS  Google Scholar 

  59. Yun MJ et al (2019) Three-dimensional textile platform for electrochemical devices and its application to dye-sensitized solar cells. Sci Rep 9(1):1–8

    Article  Google Scholar 

  60. Behera BK, Hari P (2010) Woven textile structure: theory and applications. Elsevier

    Book  Google Scholar 

  61. Opwis K, Gutmann JS, Lagunas Alonso AR, Rodriguez Henche MJ, Ezquer Mayo M, Breuil F, Leonardi E, Sorbello L (2016) Preparation of a textile-based dye-sensitized solar cell. Int J Photoenergy. https://doi.org/10.1155/2016/3796074

  62. Liu J et al (2019) Processing of printed dye sensitized solar cells on woven textiles. IEEE J Photovoltaics 9(4):1020–1024

    Article  Google Scholar 

  63. Liu G et al (2018) Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy 49:95–102

    Article  CAS  Google Scholar 

  64. Fan X et al (2007) Conductive mesh based flexible dye-sensitized solar cells. Appl Phys Lett 90(7):073501

    Article  CAS  Google Scholar 

  65. Arbab AA et al (2015) Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell. Phys Chem Chem Phys 17(19):12957–12969

    Article  CAS  PubMed  Google Scholar 

  66. Arbab AA et al (2016) Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells. J Mater Chem A 4(4):1495–1505

    Article  CAS  Google Scholar 

  67. Memon AA et al (2017) Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs. Sol Energy 150:521–531

    Article  CAS  Google Scholar 

  68. Xu J et al (2014) A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. J Power Sources 257:230–236

    Article  CAS  Google Scholar 

  69. Sahito IA et al (2015) Graphene coated cotton fabric as textile structured counter electrode for DSSC. Electrochim Acta 173:164–171

    Article  CAS  Google Scholar 

  70. Sahito IA et al (2016) Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell. J Power Sources 319:90–98

    Article  CAS  Google Scholar 

  71. Ito S et al (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun 38:4004–4006

    Article  Google Scholar 

  72. Liu J et al (2018) Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applications. Mater Today Proc 5(5):13753–13758

    Article  CAS  Google Scholar 

  73. Liu J et al (2018) Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications. Mater Today Proc 5(5):13846–13854

    Article  CAS  Google Scholar 

  74. Ehrmann A, Blachowicz T (2019) Recent coating materials for textile-based solar cells. AIMS Mater Sci 6:234–251

    Article  CAS  Google Scholar 

  75. Byranvand MM, Bazargan MH, Kharat AN (2010) Fabrication and investigation of flexible dye sensitized nanocrystalline solar cell utilizing natural sensitizer operated with gold coated counter electrode. Dig J Nanomater Biostruct 5(3):645–650

  76. Halme J, Saarinen J, Lund P (2006) Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates. Sol Energy Mater Sol Cells 90(7-8):887–899

    Article  CAS  Google Scholar 

  77. Zen S, Ishibashi Y, Ono R (2014) Low-temperature sintering for plastic dye-sensitized solar cells using conventional TiO2 paste containing organic binders. Appl Phys Lett 104(21):213904

    Article  CAS  Google Scholar 

  78. Lin LY et al (2012) Low-temperature flexible Ti/TiO2 photoanode for dye-sensitized solar cells with binder-free TiO2 paste. Prog Photovolt Res Appl 20(2):181–190

    Article  CAS  Google Scholar 

  79. Watson T et al (2011) Ultrafast near infrared sintering of TiO2 layers on metal substrates for dye-sensitized solar cells. Prog Photovolt Res Appl 19(4):482–486

    Article  CAS  Google Scholar 

  80. Komolafe A et al (2018) Modelling and experimental validation of the effect of the elastic properties of fabrics on the durability of screen printed e-textiles. Smart Mater Struct 27(7):075046

    Article  Google Scholar 

  81. Fu X et al (2018) A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J Mater Chem A 6(1):45–51

    Article  CAS  Google Scholar 

  82. Pu X et al (2016) Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv Energy Mater 6(20):1601048

    Article  CAS  Google Scholar 

  83. Liu G et al (2015) An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy 11:341–347

    Article  CAS  Google Scholar 

  84. Fan X et al (2008) Wire-shaped flexible dye-sensitized solar cells. Adv Mater 20(3):592–595

    Article  CAS  Google Scholar 

  85. Liu G et al (2018) Study on a stretchable, fiber-shaped, and TiO2 nanowire array-based dye-sensitized solar cell with electrochemical impedance spectroscopy method. Electrochim Acta 267:34–40

    Article  CAS  Google Scholar 

  86. Velten J et al (2013) Weavable dye sensitized solar cells exploiting carbon nanotube yarns. Appl Phys Lett 102(20):203902

    Article  CAS  Google Scholar 

  87. Li Z et al (2016) Electrophoretic deposition of graphene-TiO2 hierarchical spheres onto Ti thread for flexible fiber-shaped dye-sensitized solar cells. Mater Des 105:352–358

    Article  CAS  Google Scholar 

  88. Chen L et al (2015) One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: polymorph-dependent conversion efficiency. Nano Energy 11:697–703

    Article  CAS  Google Scholar 

  89. Yang Z et al (2013) Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew Chem 125(29):7693–7696

    Article  Google Scholar 

  90. Chen T et al (2012) Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett 12(5):2568–2572

    Article  CAS  PubMed  Google Scholar 

  91. Kim JH et al (2021) Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells. Dyes Pigments 185:108855

    Article  CAS  Google Scholar 

  92. Li C et al (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17(23):2406–2411

    Article  CAS  Google Scholar 

  93. Berson S et al (2007) Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater 17(16):3363–3370

    Article  CAS  Google Scholar 

  94. Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8(4):982–987

    Article  CAS  PubMed  Google Scholar 

  95. Kim SL et al (2006) Rutile TiO 2-modified multi-wall carbon nanotubes in TiO 2 film electrodes for dye-sensitized solar cells. J Appl Electrochem 36(12):1433–1439

    Article  CAS  Google Scholar 

  96. Yen C-Y et al (2008) Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 19(37):375305

    Article  PubMed  CAS  Google Scholar 

  97. Vigolo B et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334

    Article  CAS  PubMed  Google Scholar 

  98. Lv T et al (2016) Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11(5):644–660

    Article  CAS  Google Scholar 

  99. Wang L et al (2020) Application challenges in fiber and textile electronics. Adv Mater 32(5):1901971

    Article  CAS  Google Scholar 

  100. Xu S et al (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4(1):1–8

    Article  Google Scholar 

  101. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361

    Article  CAS  PubMed  Google Scholar 

  102. Peng H et al (2009) Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol 4(11):738–741

    Article  CAS  PubMed  Google Scholar 

  103. Li Q et al (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19(20):3358–3363

    Article  CAS  Google Scholar 

  104. Koziol K et al (2007) High-performance carbon nanotube fiber. Science 318(5858):1892–1895

    Article  CAS  PubMed  Google Scholar 

  105. Weintraub B, Wei Y, Wang ZL (2009) Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew Chem 121(47):9143–9147

    Article  Google Scholar 

  106. Zhang S et al (2011) Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett 11(8):3383–3387

    Article  CAS  PubMed  Google Scholar 

  107. Lee WJ et al (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interfaces 1(6):1145–1149

    Article  CAS  PubMed  Google Scholar 

  108. Nam JG et al (2010) Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scr Mater 62(3):148–150

    Article  CAS  Google Scholar 

  109. Lima MD et al (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013):51–55

    Article  CAS  PubMed  Google Scholar 

  110. Zhang M et al (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219

    Article  CAS  PubMed  Google Scholar 

  111. Rhee YH et al (2014) Enhanced electrocatalytic activity of plasma functionalized multi-walled carbon nanotube-entrapped poly (3, 4-ethylendioxythiophene): poly (styrene sulfonate) photocathode. Electrochim Acta 146:68–72

    Article  CAS  Google Scholar 

  112. Jiang Z, Jiang Z-j, Meng Y (2011) High catalytic performance of Pt nanoparticles on plasma treated carbon nanotubes for electrooxidation of ethanol in a basic solution. Appl Surf Sci 257(7):2923–2928

    Article  CAS  Google Scholar 

  113. Ito S et al (2006) High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18(9):1202–1205

    Article  CAS  Google Scholar 

  114. Wang P et al (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B 107(51):14336–14341

    Article  CAS  Google Scholar 

  115. Wooh S et al (2013) Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells. Adv Mater 25(22):3111–3116

    Article  CAS  PubMed  Google Scholar 

  116. Shan GB, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22(39):4373–4377

    Article  CAS  PubMed  Google Scholar 

  117. Miao Q et al (2011) A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Adv Mater 23(24):2764–2768

    Article  CAS  PubMed  Google Scholar 

  118. Bai Y et al (2012) In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24(43):5850–5856

    Article  CAS  PubMed  Google Scholar 

  119. Wang H et al (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys A 97(1):25–29

    Article  CAS  Google Scholar 

  120. Chen L et al (2013) Fiber dye-sensitized solar cells consisting of TiO 2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. J Mater Chem A 1(38):11790–11794

    Article  CAS  Google Scholar 

  121. Lv Z et al (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4):1248–1253

    Article  CAS  PubMed  Google Scholar 

  122. Fang X et al (2014) Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv Mater 26(11):1694–1698

    Article  CAS  PubMed  Google Scholar 

  123. Fu Y et al (2013) A novel low-cost, one-step and facile synthesis of TiO2 for efficient fiber dye-sensitized solarcells. Nano Energy 2(4):537–544

    Article  CAS  Google Scholar 

  124. Li Y et al (2012) Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ Sci 5(10):8950–8957

    Article  CAS  Google Scholar 

  125. Liu P et al (2018) Polymer solar cell textiles with interlaced cathode and anode fibers. J Mater Chem A 6(41):19947–19953

    Article  CAS  Google Scholar 

  126. Kou L et al (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5(1):1–10

    Article  CAS  Google Scholar 

  127. Yang Z et al (2018) Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 132:241–248

    Article  CAS  Google Scholar 

  128. Loke G et al (2020) Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater 32(1):1904911

    Article  CAS  Google Scholar 

  129. Zhao J et al (2019) Duplex printing of all-in-one integrated electronic devices for temperature monitoring. J Mater Chem A 7(3):972–978

    Article  CAS  Google Scholar 

  130. Dai H et al (2013) Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells. Nanoscale 5(11):5102–5108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research and financial support received from the Post Graduate Institute of Science (PGIS University of Peradeniya) research grant (Grant No. PGIS/2020/05). This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 952169, project title: SYNERGY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thennakoon Mudiyanselage Wijendra Jayalath Bandara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T.M.W.J., Hansadi, J.M.C. & Bella, F. A review of textile dye-sensitized solar cells for wearable electronics. Ionics 28, 2563–2583 (2022). https://doi.org/10.1007/s11581-022-04582-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04582-8

Keywords

Navigation