Skip to main content
Log in

The enhancement in cell performance of CdTe-based solar cell with Si/SiO2 distributed Bragg reflectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the very effective design that is Distributed Bragg Reflectors (DBRs) technique and Back Surface Field (BSF) layer are used to fabricate the high-efficiency CdTe-based solar cells. The CdTe-based thin-film solar cells are fabricated as SiO2/Si(DBR)/ZnTe (BSF)/CdTe/CdS/ZnO/FTO. Then, the effects of different number of DBRs layers on CdTe-based solar cell are investigated. 68.77% reflection intensity can be obtained even in 1 period and reflection intensity can reach 99.28% in 3 periods. Significant improvement in cell output parameters are observed with increasing DBRs up to 3 periods. The highest JSC, FF and η values are obtained as 109.82 A/m2, 82.03% and 10.39%, respectively. With the rise in the DBR period, the long wavelength tail of the reflection spectrum is drawn into the center of the reflection band and the long wavelength reflectivity is reduced. This narrowing reduces the rate of reflection of low-energy photons that cannot be absorbed by CdTe layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O.V.-G. Mendoza-Perez, R.J. Sastre-Hernandez, G. Contreras-Puente, Solar Energy materials and solar cells cdte solar cell degradation studies with the use of cds as the window material. Sol. Energy Mater. Sol. Cells 93, 79–84 (2009)

    Article  Google Scholar 

  2. M. Dey, M. A. Matin, N. Amin, High efficient and stable ultra-thin CdTe solar cell with a potential copper telluride BSF. pp. 590–593 (2016)

  3. B. Kınacı, Y. Özen, T. Asar, S.Ş. Çetin, T. Memmedli, M. Kasap, S. Özçelik, Study on growth and characterizations of Ga x In 1 2 x P/GaAs solar cell structure. J. Mater. Sci. Mater. Electr. 24, 3269–3274 (2013)

    Article  Google Scholar 

  4. Y. Özen, N. Akın, B. Kinaci, S. Özçelik, Solar energy materials and solar cells performance evaluation of a GaInP/GaAs solar cell structure with the integration of AlGaAs tunnel junction. Sol. Energy Mater. Sol. Cells 137, 1 (2015)

    Article  Google Scholar 

  5. A. Muhammetgulyyev, B. Kinaci, A. Aho, Y. Yalcin, C. Cetinkaya, F. Kuruoglu, V-groove etched 1-eV-GaInNAs nipi solar cell. Appl. Phys. A 125(1), 27 (2019)

    Article  ADS  Google Scholar 

  6. D.L. Batzner, Development of efficient and stable back contacts on CdTe r CdS solar cells. Thin Solid Films 387(1–2), 151–154 (2001)

    Article  ADS  Google Scholar 

  7. K. Durose, P.R. Edwards, D.P. Halliday, Materials aspects of CdTe/CdS solar cells. J. Cryst. Growth. 197(3), 733–742 (1999)

    Article  ADS  Google Scholar 

  8. G. Surucu, K. Colakoglu, E. Deligoz, Y. Ciftci, N. Korozlu, Electronic, elastic and optical properties on the Zn1−xMgxSe mixed alloys. J. Mater. Sci. 46(4), 1007–1014 (2011)

    Article  ADS  Google Scholar 

  9. G. Surucu, K. Colakoglu, E. Deligoz, N. Korozlu, Y.O. Ciftci, The electronic and optical properties of Zn1− xCaxSe mixed alloys. Solid State Commun. 150(29-30), 1413–1418 (2010)

    Article  ADS  Google Scholar 

  10. H.H. Gullu, O.B. Surucu, M. Isik, M. Terlemezoglu, M. Parlak, Material and Si-based diode analyses of sputtered ZnTe thin films. J. Mater. Sci. Mater. Electron 31, 11390–11397 (2020)

    Article  Google Scholar 

  11. V. Krishnakumar, J. Han, A. Klein, W. Jaegermann, CdTe thin fi lm solar cells with reduced CdS fi lm thickness. Thin Solid Films 519, 7138–7141 (2011)

    Article  ADS  Google Scholar 

  12. T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, 16.0% Efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. 36, 6304 (1997)

    Article  Google Scholar 

  13. E. Colegrove, R. Banai, C. Blissett, C. Buurma, J. Ellsworth, M. Morley, S. Barnes, C. Gilmore, J.D. Bergeson, R. Dhere, M. Scott, T. Gessert, S. Sivananthan, High-efficiency polycrystalline CdS/CdTe solar cells on buffered commercial TCO-coated glass. J. Electr. Mater. 41(10), 2833–2837 (2012)

    Article  ADS  Google Scholar 

  14. A. Bosio, S. Pasini, N. Romeo, The history of photovoltaics with emphasis on cdte solar cells and modules. Coatings 10, 344 (2020)

    Article  Google Scholar 

  15. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  ADS  Google Scholar 

  16. X. Wu, J.C. Keane, R.G. Dhere, C. Dehert, D.S. Albin, A. Dude, T.A. Gessert, S. Asher, D. Levi, P. Sheldon, 16.5% Efficient CdS/CdTe polycrystalline thin-film solar cell. In Proceedings of the 17th European photovoltaic solar energy conference, Munich, Germany, 22–26 October 2001

  17. First Solar Establishes New World Record for CdTe Efficiency. 2016. Available online: https://www.solarpowerworldonline.com/2016/02/24939/. Accessed 20 Jan 2020

  18. N. Akin, U.C. Baskose, B. Kinaci, AZO thin film-based UV sensors : effects of RF power on the films. Appl. Phys. A 119, 965–970 (2015)

    Article  ADS  Google Scholar 

  19. B. Kinaci, S. Özçelik, Analysis of the temperature dependence of the capacitance—voltage and conductance—voltage characteristics of Au/TiO 2 (rutile)/n -Si structures. J. Electr. Mater. 42(6), 1108–1113 (2013)

    Article  ADS  Google Scholar 

  20. İ. Kars, S.Ş. Çetin, B. Kınacı, B. Sarıkavak, A. Bengi, H. Altuntaş, M.K. Öztürk, S. Özçelik, Influence of thermal annealing on the structure and optical properties of d.c. magnetron sputtered titanium dioxide thin films. Surf. Interface Anal. 42, 1247–1251 (2010)

    Article  Google Scholar 

  21. M. Isik, H.H. Gullu, M. Terlemezoglu, O. Bayrakli Surucu, M. Parlak, N.M. Gasanly, Investigation of band gap energy versus temperature for SnS2 thin films grown by RF-magnetron sputtering. Phys. B Condens. Matter 591, 412264 (2020)

    Article  Google Scholar 

  22. O.B. Surucu, Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode. J. Mater. Sci. Mater. Electr. 30(21), 19270–19278 (2019)

    Article  Google Scholar 

  23. S. Delice, M. Isik, H.H. Gullu, M. Terlemezoglu, O. Bayrakli Surucu, N.M. Gasanly, M. Parlak, Temperature dependent band gap in SnS2xSe (2–2x)(x= 0.5) thin films. Mater. Sci. Semicond. Process. 114, 105083 (2020)

    Article  Google Scholar 

  24. O. Surucu, M. Isik, N.M. Gasanly, M. Terlemezoglu, M. Parlak, Temperature-tuned band gap properties of MoS2 thin films. Mater. Lett. 275, 128080 (2020)

    Article  Google Scholar 

  25. N. Akin, B. Kınacı, Y. Ozen, S. Ozcelik, Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films. J. Mater. Sci. Mater. Electron. 28(10), 7376–7384 (2017)

    Article  Google Scholar 

  26. B. Kınacı, N. Akın, İ. Kars Durukan, T. Memmedli, S. Özçelik, The study on characterizations of SrTiO 3 thin films with different growth temperatures. Superlattices Microstruct. 76, 234–243 (2014)

    Article  ADS  Google Scholar 

  27. S. Khosroabadi, Design of a high efficiency CdS/CdTe solar cell with optimized step doping, film thickness, and carrier lifetime of the absorption layer. J. Eur. Opt. Soc. Rapid Publ. 14052, 1–6 (2014)

    Google Scholar 

  28. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85(8), 1580–1608 (2011)

    Article  ADS  Google Scholar 

  29. G. Sürücü, H.H. Güllü, Ö. Bayrakli, M. Parlak, Enhancement in photovoltaic characteristics of CdS/CdTe heterojunction. J. Polytech. 0900(4), 801–805 (2017)

    Article  Google Scholar 

  30. Y. Sulaiman, N. Amin, A comparatıve study of bsf layers for ultra-thın CdS : O/CdTe solar cells. Chalcogenide Lett. 8(2), 65–75 (2011)

    Google Scholar 

  31. R.S. Sultana, A.N. Bahar, Md Asaduzzaman, K. Ahmed, Numerical modeling of a CdS/CdTe photovoltaic cell based on ZnTe BSF layer with optimum thickness of absorber layer. Cogent Eng. 4, 1318459 (2017)

    Google Scholar 

  32. M. Dey, M. Dey, M.A. Matin, N. Amin, Design of high efficient and stable ultra-thin CdTe solar cells with ZnTe as a potential BSF”, 3rd international conference on green energy and technology (ICGET), 2015

  33. S. Asfandyar et al., Efficient materials for thin—film CdTe solar cell based on back surface field and distributed Bragg reflector. Appl. Phys. A 126(1), 1–8 (2020)

    Google Scholar 

  34. S. Khosroabadi, S.H. Keshmiri, Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector. Opt. Exp. 22, 921–929 (2014)

    Article  ADS  Google Scholar 

  35. S.A. Al Kuhaımı, N.M. Shaalan, S. Bahammam, The electron affinity difference in CdS/CdTe solar cells. Proc. Indian Acad. Sci. (Chem. Sci.) 110(3), 199–206 (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Republic of Turkey Ministry of Development under the project number of 2016K121220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus Özen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, Y. The enhancement in cell performance of CdTe-based solar cell with Si/SiO2 distributed Bragg reflectors. Appl. Phys. A 126, 632 (2020). https://doi.org/10.1007/s00339-020-03808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03808-8

Keywords

Navigation