Skip to main content

Advertisement

Log in

Nano-CeO2-loaded chitosan-bocglycine zinc complex for the photocatalytic degradation of picric acid by the combination of Fenton’s reagent

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CeO2 nanoparticle-loaded chitosan-bocglycine zinc complex was synthesized and characterized by UV–Visible, FT-IR, Powder XRD, and SEM–EDX analysis. From the XRD analysis, the crystal structure was studied and the approximate nanoparticle size of the CeO2 was calculated to be 22 nm. The UV–Visible spectrum has detected the presence of CeO2 nanoparticles by appearing corresponding intense peaks. The stretching frequency of the Ce-O bond was detected by the FT-IR peak at 720 cm−1. The SEM graph showed spherical morphology and uniform distribution of nanoparticles of both pure CeO2 and CeO2 nanocomposites. The photocatalytic degradation of picric acid (PA) with a nanocomposite as photocatalyst combined with Fenton’s process was studied under UV light (254/365/395 nm), visible, and sunlight at different pH values (2.5, 7, and 10.5). It is observed that the degradation of PA (pH2.5) under sunlight was very high and reached 100% within 35 min. The experiment was also repeated with pure photocatalyst (CeO2-loaded chitosan-bocglycine zinc complex), Fenton’s reagent (Fe2+/H2O2), and combined with both under sunlight at a pH value of 2.5, a time interval of 40 min. The experimental results confirmed that under sunlight the degradation of picric acid (pH2.5) with pure photocatalyst is reached up to 20%, with Fenton’s reagent, it is reached up to 45% but when photocatalyst and Fenton’s reagent both are combined, it is reached up to 100%. It is concluded that the degradation of PA was more efficient under sunlight with a combination of both our prepared photocatalyst and Fenton’s reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.A. Al-Onazi, M.H.H. Ali, Synthesis and characterization of cerium oxide hybrid with chitosan nanoparticles for enhancing the photodegradation of Congo Red dye. J. Mater. Sci. Mater. Electron. 32(9), 12017–12030 (2021). https://doi.org/10.1007/s10854-021-05832-7

    Article  Google Scholar 

  2. B. Anusha, M. Anbuchezhiyan, R. Sribalan, An efficient photocatalytic degradation of nitrophenols using TiO2 as a heterogeneous photo-Fenton catalyst. React. Kinet. Mech. Catal. 134(1), 501–515 (2021). https://doi.org/10.1007/s11144-021-02064-y

    Article  Google Scholar 

  3. B. Anusha, M. Anbuchezhiyan, R. Sribalan, N. Srinivasan alias Arunsankar, Synergistic effect of TiO2-rGO nanocomposites with Fenton’s reagent for the enhanced photocatalytic degradation of nitrophenols in solar light. Appl. Phys. A. (2022). https://doi.org/10.1007/S00339-022-05554-5

    Article  Google Scholar 

  4. W. Chinglembi, C. Aayush, G. Mahesh, K.S.O.P. Pandey, Group V elements (V, Nb and Ta) doped—CeO 2 particles for efficient photo—oxidation of methylene blue dye. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01822-0

    Article  Google Scholar 

  5. O. Ejeromedoghene, O. Oderinde, X. Ma, M. Olusola, S. Adewuyi, G. Fu, Reroute green synthesis of hexagonal and triclinic nanostructured cerium oxide: morphology and optical properties. J. Mater. Sci.: Mater. Electron. 32(12), 16324–16334 (2021). https://doi.org/10.1007/s10854-021-06183-z

    Article  Google Scholar 

  6. R. Fatima, M.N. Afridi, V. Kumar, J. Lee, I. Ali, K.H. Kim, J.O. Kim, Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 231, 899–912 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.05.292

    Article  Google Scholar 

  7. N.P. Ferraz, A.E. Nogueira, F.C.F. Marcos, V.A. Machado, R.R. Rocca, E.M. Assaf, Y.J.O. Asencios, CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. (2019). https://doi.org/10.1007/s12598-019-01282-7

    Article  Google Scholar 

  8. D. Hariharan, A. Jegatha Christy, J. Mayandi, L.C. Nehru, Visible light active photocatalyst: hydrothermal green synthesized TiO2 NPs for degradation of picric acid. Mater. Lett. 222, 45–49 (2018). https://doi.org/10.1016/j.matlet.2018.03.109

    Article  Google Scholar 

  9. M. İlgar, S. Karakuş, A. Kilislioğlu, Design, characterization and evaluation of the drug-loaded chitosan/cerium oxide nanoparticles with pH-controlled drug release. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03839-y

    Article  Google Scholar 

  10. M. Ismail, M.I. Khan, S.B. Khan, K. Akhtar, M.A. Khan, A.M. Asiri, Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J. Mol. Liq. 268, 87–101 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.07.030

    Article  Google Scholar 

  11. A.A. Kabure, B.S. Shirke, S.R. Mane, K.M. Garadkar, B.M. Sargar, K.S. Pakhare, LPG gas sensor activities of CeO2-Fe2O3 nanocomposite thin film at optimum temperature. Appl. Phys. A Mater. Sci. Process. 127(9), 1–12 (2021). https://doi.org/10.1007/s00339-021-04849-3

    Article  Google Scholar 

  12. U. La, O.C. Composite, D.N. Nhiem, D. Hong, D. Duong, T. Lim, N. Quang, B. Pham, N. Chuc, Strong adsorption of arsenite and phosphate from aqueous solution. J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01967-6

    Article  Google Scholar 

  13. Y. Li, Y. Zhang, Y. Zhang, Z. Wang, H. Yang, H. Yao, T. Wei, Q. Lin, Tripodal naphthalimide assembled novel AIE supramolecular fluorescent sensor for rapid and selective detection of picric acid. Dyes Pigm. (2020). https://doi.org/10.1016/j.dyepig.2020.108563

    Article  Google Scholar 

  14. Z. Li, W. Yang, L. Xie, Y. Li, Y. Liu, Y. Sun, Y. Bu, X. Mi, S. Zhan, W. Hu, Prominent role of oxygen vacancy for superoxide radical and hydroxyl radical formation to promote electro-Fenton like reaction by W-doped CeO2 composites. Appl. Surf. Sci. 549(February), 1–11 (2021). https://doi.org/10.1016/j.apsusc.2021.149262

    Article  Google Scholar 

  15. D. Mal, A. Balouch, A. Sirajuddin, A.M. Mahar, A.H. Pato, S. Kumar, S. Lal, A. Kumar, Synthesis and catalytic practicality of CeO2 nanoparticle: an excellent heterogenous candidate for 4-nitrophenol reduction. Appl. Nanosci. (Switzerland) 10(9), 3443–3455 (2020). https://doi.org/10.1007/s13204-020-01472-1

    Article  ADS  Google Scholar 

  16. Mandade, P. (2021). Introduction, basic principles, mechanism, and challenges of photocatalysis. Handbook of nanomaterials for wastewater treatment. 137–154. https://doi.org/10.1016/b978-0-12-821496-1.00016-7

  17. M.A. Mohd Adnan, L.P. Bao, N. Muhd Julkapli, Mitigation of pollutants by chitosan/metallic oxide photocatalyst: A review. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121190

    Article  Google Scholar 

  18. M.J. Muñoz-Batista, R. Luque, Heterogeneous photocatalysis. ChemEngineering (2021). https://doi.org/10.3390/chemengineering5020026

    Article  Google Scholar 

  19. A. Muthuvel, M. Jothibas, C. Manoharan, S.J. Jayakumar, Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res. Chem. Intermed. 46(5), 2705–2729 (2020). https://doi.org/10.1007/s11164-020-04115-w

    Article  Google Scholar 

  20. L. Nadjia, E. Abdelkader, B. Naceur, B. Ahmed, CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation. J. Rare Earths 36(6), 575–587 (2018). https://doi.org/10.1016/j.jre.2018.01.004

    Article  Google Scholar 

  21. N. Pani, V. Tejani, T.S. Anantha-Singh, A. Kandya, Simultaneous removal of COD and Ammoniacal Nitrogen from dye intermediate manufacturing Industrial Wastewater using Fenton oxidation method. Appl. Water Sci. 10(2), 1–7 (2020). https://doi.org/10.1007/s13201-020-1151-1

    Article  Google Scholar 

  22. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 31(5), 3729–3749 (2020). https://doi.org/10.1007/s10854-020-02994-8

    Article  Google Scholar 

  23. K. Rajashekhar, G. Vinod, K. Mahesh Kumar, J.L. Naik, Impact of erbium (Er) doping on the structural and magnetic properties of Ni-Cu (Ni0.1Cu0.9Fe2O4) nanoferrites. J. Magn. Magn. Mater. 555, 169323 (2022). https://doi.org/10.1016/J.JMMM.2022.169323

    Article  Google Scholar 

  24. C. Rodrigues, J.M.M. de Mello, F. Dalcanton, D.L.P. Macuvele, N. Padoin, M.A. Fiori, C. Soares, H.G. Riella, Mechanical, thermal and antimicrobial properties of chitosan-based-nanocomposite with potential applications for food packaging. J. Polym. Environ. 28(4), 1216–1236 (2020). https://doi.org/10.1007/s10924-020-01678-y

    Article  Google Scholar 

  25. K. Saravanakumar, M.M. Ramjan, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. J. Alloy. Compd. 664, 149–160 (2016). https://doi.org/10.1016/j.jallcom.2015.12.245

    Article  Google Scholar 

  26. S.K. Sen, T.C. Paul, S. Dutta, M.N. Hossain, M.N.H. Mia, XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. J. Mater. Sci. Mater. Electron. 31(2), 1768–1786 (2020). https://doi.org/10.1007/s10854-019-02694-y

    Article  Google Scholar 

  27. R.P. Senthilkumar, V. Bhuvaneshwari, R. Ranjithkumar, S. Sathiyavimal, V. Malayaman, B. Chandarshekar, Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int. J. Biol. Macromol. 104, 1746–1752 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.139

    Article  Google Scholar 

  28. B. Usharani, V. Manivannan, Enhanced photocatalytic activity of reduced graphene oxide-TiO2 nanocomposite for picric acid degradation. Inorg. Chem. Commun. 142, 109660 (2022). https://doi.org/10.1016/J.INOCHE.2022.109660

    Article  Google Scholar 

  29. S. Xie, Z. Wang, F. Cheng, P. Zhang, W. Mai, Y. Tong, Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.02.029

    Article  Google Scholar 

  30. Z. Xiong, H. Zhang, W. Zhang, B. Lai, G. Yao, Removal of nitrophenols and their derivatives by chemical redox: a review. Chem. Eng. J. 359, 13–31 (2019). https://doi.org/10.1016/J.CEJ.2018.11.111

    Article  Google Scholar 

  31. H. Zhang, M. Zhao, Y. Yang, Y.S. Lin, Hydrolysis and condensation of ZIF-8 in water. Microporous Mesoporous Mater. 288, 109568 (2019). https://doi.org/10.1016/j.micromeso.2019.109568

    Article  Google Scholar 

  32. J. Zhang, S. Qiu, H. Feng, T. Hu, Y. Wu, T. Luo, W. Tang, D. Wang, Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.131403

    Article  Google Scholar 

  33. N. Zhang, E.P. Tsang, J. Chen, Z. Fang, D. Zhao, Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts. J. Colloid Interface Sci. 558, 163–172 (2019). https://doi.org/10.1016/j.jcis.2019.09.079

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arshanapelly Mahender Rao or Domala Suresh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

All co-authors ensure that accepted principles of ethical and professional conduct have been followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahender Rao, A., Suresh, D., Sribalan, R. et al. Nano-CeO2-loaded chitosan-bocglycine zinc complex for the photocatalytic degradation of picric acid by the combination of Fenton’s reagent. Appl. Phys. A 128, 742 (2022). https://doi.org/10.1007/s00339-022-05841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05841-1

Keywords

Navigation