Skip to main content

Advertisement

Log in

ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here we report on the development of a hybrid nanofibrous scaffold made from polyvinylidene fluoride (PVDF) nanofibers embedding zinc oxide nanorods (ZnOns), and poly(ε-caprolactone) (PCL) nanofibers incorporating dexamethasone (DEX)-loaded chitosan nanoparticles using dual-electrospinning method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile analysis were carried out for physiochemical characterization of the scaffolds, followed by DEX release profile. In addition, an MTT assay was conducted to assess the viability of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) on the hybrid nanofibrous scaffold. Furthermore, the alkaline phosphatase (ALP) activity of mBMSCs was identified as an early sign of osteogenic differentiation. Our findings show that piezoelectric components improved the mechanical capabilities, and controlled release of DEX enhanced osteogenic differentiation. Overall, hybrid nanofibrous scaffold composed of PVDF embedded with 3% ZnOns and PCL incorporated with 0.8% DEX-loaded chitosan nanoparticles proved to have superior cell support and proliferation, while showing acceptable differentiation potential and remarkable elastic modulus of 41.6 ± 12.4 MPa and therefore might be considered to have potential application in bone regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Girón et al., Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz. J. Med. Biol. Res. 54, 2 (2021)

    Article  Google Scholar 

  2. Gulati, K., A. Abdal-hay, and S. Ivanovski, Novel Nano-Engineered Biomaterials for Bone Tissue Engineering. 2022, Multidisciplinary Digital Publishing Institute. p. 333.

  3. M. Shokri et al., Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv. Colloid Interf. Sci. 2, 102706 (2022)

    Article  Google Scholar 

  4. A. Prasad, State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering. Mater. Today: Proc. 2, 2 (2021)

    Google Scholar 

  5. B. Vaidhyanathan et al., Fabrication and investigation of the suitability of chitosan-silver composite scaffolds for bone tissue engineering applications. Process Biochem. 100, 178–187 (2021)

    Article  Google Scholar 

  6. Y. Zhu, C. Goh, A. Shrestha, Biomaterial properties modulating bone regeneration. Macromol. Biosci. 21(4), 2000365 (2021)

    Article  Google Scholar 

  7. A. Stahl, Y.P. Yang, Regenerative approaches for the treatment of large bone defects. Tissue Eng. Part B Rev. 2, 2 (2020)

    Google Scholar 

  8. M. Zhao et al., Dexamethasone-activated MSCs release MVs for stimulating osteogenic response. Stem Cells Int. 20, 18 (2018)

    Google Scholar 

  9. L. Xu et al., Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin. J. Biomed. Mater. Res., Part A 110(2), 316–330 (2022)

    Article  Google Scholar 

  10. E. Tehrani, S. Amiri, Synthesis and characterization PVA electro-spun nanofibers containing encapsulated vitamin C in chitosan microspheres. J. Text. Inst. 113(2), 212–223 (2022)

    Article  Google Scholar 

  11. N. Omidvar, F. Ganji, M.B. Eslaminejad, In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres. J. Biomed. Mater. Res., Part A 104(7), 1657–1667 (2016)

    Article  Google Scholar 

  12. M. Khalili et al., Study of osteogenic potential of electrospun PCL incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. Polym. Adv. Technol. 33(3), 782–794 (2022)

    Article  Google Scholar 

  13. M. Mohammadi et al., Conductive multichannel PCL/gelatin conduit with tunable mechanical and structural properties for peripheral nerve regeneration. J. Appl. Polym. Sci. 137(40), 49219 (2020)

    Article  Google Scholar 

  14. R.F. Bombaldi de Souza, Â.M. Moraes, Hybrid bilayered chitosan-xanthan/PCL scaffolds as artificial periosteum substitutes for bone tissue regeneration. J. Mater. Sci. 2, 1–17 (2022)

    Google Scholar 

  15. Z. Liu et al., Chitosan-based drug delivery systems: Current strategic design and potential application in human hard tissue repair. Eur. Polymer J. 2, 110979 (2022)

    Article  Google Scholar 

  16. E.V. Campos et al., Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BioMed Res. Int. 20, 22 (2022)

    Google Scholar 

  17. K. Jiang, X. Zhou, T. He, The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen. Int. J. Biol. Macromol. 209, 814–824 (2022)

    Article  Google Scholar 

  18. K. Balagangadharan et al., Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohyd. Polym. 216, 1–16 (2019)

    Article  Google Scholar 

  19. C.V. Fuenteslópez, H. Ye, Electrospun fibres with hyaluronic acid-chitosan nanoparticles produced by a portable device. Nanomaterials 10(10), 2016 (2020)

    Article  Google Scholar 

  20. E. Fukada, I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)

    Article  ADS  Google Scholar 

  21. P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  Google Scholar 

  22. S. Sukumaran et al., Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 32(7), 746–780 (2021)

    Article  Google Scholar 

  23. T. Lei et al., Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 50(12), 4342–4347 (2015)

    Article  ADS  Google Scholar 

  24. Z. He et al., Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 13(2), 174 (2021)

    Article  Google Scholar 

  25. K. Shi et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 80, 105515 (2021)

    Article  Google Scholar 

  26. M. Hasanzadeh, M.R. Ghahhari, S.M. Bidoki, Enhanced piezoelectric performance of PVDF-based electrospun nanofibers by utilizing in situ synthesized graphene-ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 2, 1–12 (2021)

    Google Scholar 

  27. L. Shi et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80, 105599 (2021)

    Article  Google Scholar 

  28. L. Sarkar et al., ZnO nanoparticles embedded silk fibroin—a piezoelectric composite for nanogenerator applications. Nanotechnology 33(26), 265403 (2022)

    Article  ADS  Google Scholar 

  29. V. Puspasari et al., ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst. Eng. 2, 1–25 (2022)

    Google Scholar 

  30. R. Augustine et al., Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 4(93), 51528–51536 (2014)

    Article  ADS  Google Scholar 

  31. M. Satthiyaraju, T. Ramesh, K. Jagatheswaran, Annealing and ZnO Doping Effects on Hydrophilicity and Mechanical Strength of PVDF Nanocomposite Thin Films, in Advances in Manufacturing Technology. (Springer, 2019), pp. 463–471

    Google Scholar 

  32. Y. Li, L. Sun, T.J. Webster, The investigation of ZnO/poly (vinylidene fluoride) nanocomposites with improved mechanical, piezoelectric, and antimicrobial properties for orthopedic applications. J. Biomed. Nanotechnol. 14(3), 536–545 (2018)

    Article  Google Scholar 

  33. R. Augustine et al., Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 21(3), 1–17 (2014)

    Article  Google Scholar 

  34. S. Vakilian et al., Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite. Int. J. Biol. Macromol. 75, 248–257 (2015)

    Article  Google Scholar 

  35. S.P. Goutam, A.K. Yadav, A.J. Das, Coriander extract mediated green synthesis of zinc oxide nanoparticles and their structural, optical and antibacterial properties. J. Nanosci. Technol. 2, 249–252 (2017)

    Google Scholar 

  36. X. Cai et al., A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7(25), 15382–15389 (2017)

    Article  ADS  Google Scholar 

  37. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 8(1), 1–11 (2018)

    Article  Google Scholar 

  38. S.M. Hosseini, A.A. Yousefi, Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization. Iran. Polym. J. 26(5), 331–339 (2017)

    Article  Google Scholar 

  39. A. Karakucuk, S. Tort, Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol. 25(10), 1216–1225 (2020)

    Article  Google Scholar 

  40. L. Van der Schueren et al., Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohyd. Polym. 88(4), 1221–1226 (2012)

    Article  Google Scholar 

  41. F.R. Boroojeni et al., Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: design, fabrication, and characterization. Int. J. Nanomed. 15, 3903 (2020)

    Article  Google Scholar 

  42. X. Zheng et al., Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 109(4), 517–526 (2021)

    Article  Google Scholar 

  43. K. Balani et al., Physical, thermal, and mechanical properties of polymers. Biosurfaces 329, 2 (2015)

    Google Scholar 

  44. F.R. Boroojen, S. Mashayekhan, H.-A. Abbaszadeh, The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold. Iran. J. Pharmac. Res. IJPR 18(1), 111 (2019)

    Google Scholar 

  45. M. Zamani et al., Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur. J. Pharm. Biopharm. 75(2), 179–185 (2010)

    Article  Google Scholar 

  46. Q. Wang et al., Study on the interaction characteristics of dexamethasone sodium phosphate with bovine serum albumin by spectroscopic technique. New J. Chem. 38(9), 4092–4098 (2014)

    Article  Google Scholar 

  47. C. Li et al., The dosage effects of dexamethasone on osteogenic activity andbiocompatibility of poly (lactic-co-glycolic acid)/hydroxyapatite nanofibers. Artif. Cells Nanomed. Biotechnol. 47(1), 1823–1832 (2019)

    Article  Google Scholar 

  48. M. Yuasa et al., Dexamethasone enhances osteogenic differentiation of bone marrow-and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS ONE 10(2), e0116462 (2015)

    Article  Google Scholar 

  49. M.F. Abazari et al., Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet-rich plasma composite nanofibers. J. Cell. Physiol. 235(2), 1155–1164 (2020)

    Article  Google Scholar 

  50. H. Orams, K. Snibson, Ultrastructural localization and gradient of activity of alkaline phosphatase activity during rodent odontogenesis. Calcif. Tissue Int. 34(1), 273–279 (1982)

    Article  Google Scholar 

  51. B.K. Shrestha et al., Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Des. 133, 69–81 (2017)

    Article  Google Scholar 

  52. E.R. Glynn et al., Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts. J. Anim. Sci. Biotechnol. 4(1), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  53. R. Karimi-Soflou, E. Mohseni-Vadeghani, A. Karkhaneh, Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation. J. Biomed. Mater. Res. Part A 2, 2 (2021)

    Google Scholar 

  54. X. He et al., Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloids Surf., B 204, 111825 (2021)

    Article  Google Scholar 

  55. K. Kapat et al., Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Func. Mater. 30(44), 1909045 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere appreciation to the financial support of the Deputy of Research and Technology of Sharif University of Technology as well as Council for Stem Cell Sciences and Technologies who partially supported this research. Also, special thanks to Dr. Omid Tavakoli and Dr. Neda Gilani for all their supports during the project. Moreover, many thanks to Hasan Ansarizadeh for his assistance and advices in the cell culture process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh Mashayekhan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FotouhiArdakani, F., Mohammadi, M. & Mashayekhan, S. ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering. Appl. Phys. A 128, 654 (2022). https://doi.org/10.1007/s00339-022-05762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05762-z

Keywords

Navigation