Skip to main content

Advertisement

Log in

Density functional theory-based quantum-computational analysis on the strain-assisted phononic, electronic, photocatalytic properties and thermoelectric performance of monolayer Janus SnSSe

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Proposal of hydrogen production as an alternative energy source via water dissociation is one of the possible ways forward to cope with the challenge of continuous decline of conventional energy sources and its environmental hazards. Besides, in this regard, low-cost photocatalyst with improved energy efficiency is highly desirable. On the other hand, materials with pronounced thermoelectric performance are promising candidates for thermoelectric source of alternative energy applications. Hereby, we report on the strain-assisted calculated phononic and electronic properties, thermoelectric performance and photocatalytic capacity of monolayer transition-metal dichalcogenide (TMDC) SnSSe. For the first-principles quantum computations based on density functional theory, we employed PBE (Perdew–Burke–Ernzerhof) exchange correlation functional. To account for the interatomic van der Waals Forces and empirical dispersion correction, we used the method of Grimme DFT-D2. As strain is one of the most suitable techniques on tuning the chemical and physical performance of materials for promising renewable energy demands, hereby, we present a theoretical proposal on the strain-assisted tuning on the electronic properties and photocatalytic performance of monolayer SnSSe TMDC. Besides, we confirm the stability of the material with and without strain through quantum calculations of phononic spectrum. Moreover, to predict on the thermoelectric performance of the materials, we report on the calculated temperature-dependent Seebeck effect, power factor, electrical and thermal conductivity, and figure of merit. The suitability of oxidation regarding the photocatalytic performance of the materials based on valence and conduction energy band edge potentials is guaranteed at pH = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. J.P. Ji, X.F. Song, J.Z. Liu et al., Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016)

    Article  ADS  Google Scholar 

  3. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640 (2015)

    Article  Google Scholar 

  4. S. L. Zhang, M. Q. Xie, F. Y. Li, Z. Yan, Y. F. Li, E. J. Kan, W. Liu, Z. F. Chen and H. B. Zeng, Angew. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Chem. 128, 1698 (2016).

  5. A.Y. Lu, H.Y. Zhu, J. Xiao et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017)

    Article  Google Scholar 

  6. X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 26, 4405 (2016)

    Article  Google Scholar 

  7. X. Zhou, L. Gan, W.M. Tian et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035 (2015)

    Article  Google Scholar 

  8. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  9. R.X. Fei, W.B. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015)

    Article  ADS  Google Scholar 

  10. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013)

    Article  ADS  Google Scholar 

  11. W.X. Zhang, Z.S. Huang, W.L. Zhang, Y.R. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731 (2014)

    Article  Google Scholar 

  12. Z.Q. Hui, W.X. Xu, X.H. Li et al., Nanoscale 11, 6045 (2019)

    Article  Google Scholar 

  13. T. Cao, G. Wang, W.P. Han et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012)

    Article  ADS  Google Scholar 

  14. M.N. Blonsky, H.L. Zhuang, A.K. Singh, R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885 (2015)

    Article  Google Scholar 

  15. W. Huang, H.X. Da, G.C. Liang, Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013)

    Article  ADS  Google Scholar 

  16. G.P. Li, G.Q. Ding, G.Y. Gao, Thermoelectric properties of SnSe 2 monolayer. J. Phys. 29, 015001 (2017)

    Google Scholar 

  17. S.D. Guo, J.L. Wang, Spin–orbital coupling effect on the power factor in semiconducting transition-metal dichalcogenide monolayers. Semicond. Sci. Technol. 31, 095011 (2016)

    Article  ADS  Google Scholar 

  18. H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lub, Y.P. Sun, Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 4, 4538 (2016)

    Article  Google Scholar 

  19. S.D. Guo, Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C 4, 9366 (2016)

    Article  Google Scholar 

  20. A. Shafique, Y.H. Shin, Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2. Phys. Chem. Chem. Phys. 19, 32072 (2017)

    Article  Google Scholar 

  21. J. Zhang, S. Jia, I. Kholmanov et al., Janus monolayer transition-metal dichalcogenides. ACS Nano. 118, 8192 (2017)

    Article  Google Scholar 

  22. L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano. 11, 8242 (2017)

    Article  Google Scholar 

  23. M. Yagmurcukardes, C. Sevik, F.M. Peeters, Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: a first-principles study. Phys. Rev. B 100, 045415 (2019)

    Article  ADS  Google Scholar 

  24. W.J. Yin, B. Wen, G.Z. Nie, X.L. Wei, L.M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6, 1693 (2018)

    Article  Google Scholar 

  25. W.W. Shi, Z.G. Wang, J. Phys 30, 215301 (2018)

    ADS  Google Scholar 

  26. S. Ahmad, M. Idrees, F. Khan, C.V. Nguyen, I. Ahmad, B. Amin, Strain engineering of Janus ZrSSe and HfSSe monolayers and ZrSSe/HfSSe van der Waals heterostructure. Chem. Phys. Lett. 776, 138689 (2021)

    Article  Google Scholar 

  27. S. Ahmad, F. Khan, B. Amin, I. Ahmad, Effect of strain on structural and electronic properties, and thermoelectric response of MXY (M= Zr, Hf and Pt; X/Y= S, Se) vdW heterostructures; a first principles study. J. Solid State Chem. 299, 122189 (2021)

    Article  Google Scholar 

  28. S.D. Guo, X.S. Guo, R.Y. Han, Y. Deng, Predicted Janus SnSSe monolayer: a comprehensive first-principles study. Phys. Chem. Chem. Phys. 21(44), 24620–24628 (2019)

    Article  Google Scholar 

  29. P. Wang, Y. Zong, H. Liu, H. Wen, H.X. Deng, Z. Wei, J.B. Xia, Quasiparticle band structure and optical properties of the Janus monolayer and bilayer SnSSe. J. Phys. Chem. C 124(43), 23832–23838 (2020)

    Article  Google Scholar 

  30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys 21, 395502 (2009)

    Google Scholar 

  31. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchangecorrelation functional, assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029 (1999)

    Article  ADS  Google Scholar 

  32. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  33. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463 (2004)

    Article  Google Scholar 

  34. A. Sattar, U. Moazzam, Azmat Iqbal Bashir, Ali Reza, Hamid Latif, Arslan Usman, Raja Junaid Amjad, Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme Ayesha Mubshrah1 and Abdullah Nasir. Nanotechnology 32, 225705 (2021)

    Article  ADS  Google Scholar 

  35. J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 99(19), 191903 (2011)

    Article  ADS  Google Scholar 

  36. H. Zhuang, R.G. Hennig, Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B 88(11), 115314 (2013)

    Article  ADS  Google Scholar 

  37. G.K.H. Madsen, D.J. Singh, BoltzTra P. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175, 67 (2006).

  38. T. Graf, G.H. Fecher, J. Barth, J. Winterlik, C. Felser, Electronic structure and transport properties of the Heusler compound Co2TiAl. J. Phys. D Appl. Phys. 42, 084003 (2009)

    Article  ADS  Google Scholar 

  39. H.T. Nguyen, V.V. Tuan, C.V. Nguyen, H.V. Phuc, H.D. Tong, S.T. Nguyen, N.N. Hieu, Electronic and optical properties of a Janus SnSSe monolayer: effects of strain and electric field. Phys. Chem. Chem. Phys. 22(20), 11637–11643 (2020)

    Article  Google Scholar 

  40. S.-D. Guo, X.-S. Guo, R.-Y. Han, Y. Deng, Predicted Janus SnSSe monolayer: a comprehensive first-principles study. Phys. Chem. Chem. Phys. 21, 24620 (2019)

    Article  Google Scholar 

  41. A. Rahman, H.J. Kim, M. Noor-A-Alam, Y.-H. Shin, A theoretical study on tuning band gaps of monolayer and bilayer SnS2 and SnSe2 under external stimuli. Curr. Appl. Phys. 19, 709 (2019)

    Article  ADS  Google Scholar 

  42. Y. Huang, C. Ling, H. Liu, S. Wang, B. Geng, Strain-tunable phase transition and doping-induced magnetism in iodinene. J. Phys. Chem. C 118, 9251 (2014)

    Article  Google Scholar 

  43. A. Shafique, A. Samad, Y.-H. Shin, Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. Phys. Chem. Chem. Phys. 19, 20677 (2017)

    Article  Google Scholar 

  44. J.P. Perdew, M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  45. S.A. Tawfik, J.R. Reimers, C. Stampfl, M.J. Ford, van der Waals forces control the internal chemical structure of monolayers within the lamellar materials CuInP2S6 and CuBiP2Se6. J. Phys. Chem. C 122(39), 22675 (2018)

    Article  Google Scholar 

  46. H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lu, Y.P. Sun, Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 4, 4538 (2016)

    Article  Google Scholar 

  47. D. Qin, X.-J. Ge, G.-Q. Ding, G.-Y. Gao, J.-T. Lu, Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv. 7, 47243 (2017)

    Article  ADS  Google Scholar 

  48. M. Siddique, Amin Ur Rahman, Azmat Iqbal, Bakhtiar Ul Haq, Sikander Azam, Asif Nadeem, Abdul Qayyum. Int. J. Thermophys. 40, 104 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sikander Azam or Azmat Iqbal Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal conflict of interest that could have appeared to influence the work reported in this paper.

Ethical approval

Azmat Iqbal (PhD) declare on behalf of all the authors, that the work is not submitted to any other journal at this stage. The work is original and is not published elsewhere. The work is an expansion in view of previous and ongoing research in the field. The references to the earlier work reported by others are given as correctly as possible. Proper acknowledgement to others work is given wherever applicable. All the authors contributed in the research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Farooq, M., Khan, F. et al. Density functional theory-based quantum-computational analysis on the strain-assisted phononic, electronic, photocatalytic properties and thermoelectric performance of monolayer Janus SnSSe. Appl. Phys. A 128, 553 (2022). https://doi.org/10.1007/s00339-022-05690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05690-y

Keywords

Navigation