Skip to main content
Log in

Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We, here in report on the impedance, modulus and conductivity analyses of polycrystalline perovskite structured BaZr0.05Ti0.95O3 ceramic prepared by the conventional solid state reaction technique (SSRT). The X-ray diffraction (XRD) pattern of the specimen confirms the formation of phase pure perovskite structure. The surface morphology of the sample investigated by scanning electron microscopy (SEM) reveals closed packing of grains having good density and very less porosity. Impedance spectroscopy, electric modulus and conductivity have been used as a tool to investigate the electrical conduction mechanism occurring within the material. These studies are performed as a function of both temperature and frequency. The sample has been observed to exhibit negative temperature coefficient of resistance (NTCR) behavior indicating its semiconducting character. The Cole–Cole plots indicate the presence of both grains and grain boundaries. The various relaxation times in the electric modulus studies indicate that the material does not follow Debye law. The conductivity variation of BaZr0.05Ti0.95O3 ceramic has also been reported as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Kantha, K. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Curr. Appl. Phys. 9, 460–466 (2009)

    Article  Google Scholar 

  2. C. Peng, J.F. Li, W. Gong, Mater. Lett. 59, 1576–1580 (2005)

    Article  Google Scholar 

  3. D. Lin, K.W. Kwok, H.L.W. Chan, Mater. Chem. Phys. 109, 455–458 (2008)

    Article  Google Scholar 

  4. H. Maiwa, Jpn. J. Appl. Phys. 46, 7013 (2007)

    Article  Google Scholar 

  5. Z. Zhang, J. Jia, H. Yang, C. Chen, H. Sun, X. Hu, D. Yang, J. Mater. Sci. 43, 1501 (2008)

    Article  Google Scholar 

  6. Z. Chen, J. Hu, Ceram. Inter. 35, 111–115 (2009)

    Article  Google Scholar 

  7. M.Z.C. Hu, V. Kurian, E.A. Payzant, C.J. Rawn, R.D. Hunt, Powder Technol. 110(1), 2–14 (2000)

    Article  Google Scholar 

  8. R.H. Upadhyay, A.P. Argekar, R.R. Deshmukh, Bull. Mater. Sci. 37(3), 481–489 (2014)

    Article  Google Scholar 

  9. Y. Wei, Y. Song, X. Deng, B. Han, X. Zhang, Y. Shen, Y. Lin, J. Mater. Sci. Technol. 30(8) 743–747 2014

    Article  Google Scholar 

  10. T.G. Reynolds, Am. Ceram. Soc. Bull. 80, 29–32 (2001)

    Google Scholar 

  11. P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, J. Phys. Chem. Solids 74, 545–549 (2013)

    Article  Google Scholar 

  12. S. Devi, A.K. Jha, Asian J. Chem. 21(10), 117–124 (2009)

    Google Scholar 

  13. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  Google Scholar 

  14. R.Z. Chen, A.L. Cui, X.H. Wang, L. Li, Mater. Sci. Eng. B 99, 302–305 (2003)

    Article  Google Scholar 

  15. J.F. Chen, Z.G. Shen, F.T. Liu, X.L. Liu, J. Yun, Scr. Mater. 49, 509–514 (2003)

    Article  Google Scholar 

  16. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000)

    Google Scholar 

  17. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Mater. Lett. 61, 326–329 (2007)

    Article  Google Scholar 

  18. F. Moura, A.Z. Simo˜es, B.D. Stojanovic, M.A. Zaghete, E. Longo, J.A. Varela, J. Alloys Compd. 462, 129–134 (2008)

    Article  Google Scholar 

  19. C.E. Ciomaga, V. Massimo, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, J. Eur. Ceram. Soc. 27, 4061–4064 (2007)

    Article  Google Scholar 

  20. J.W. Zhai, X. Yao, L.Y. Zhang, B. Shen, Appl. Phys. Lett. 84, 3136–3138 (2006)

    Article  Google Scholar 

  21. Z.Y. Cheng, R.S. Katiyar, X. Yao, A.S. Bhalla, Phys. Rev. B 57, 8166–8177 (1998)

    Article  Google Scholar 

  22. A.K. Kalyani, A. Senyshyn, R. Ranjan, J. Appl. Phys. 114(1–6), 014102 (2013)

    Article  Google Scholar 

  23. Z.G. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. (Woodhead Publishing Limited, Cambridge, 2008)

    Book  Google Scholar 

  24. T. Badapanda, J. Adv. Ceram. 3(4) 339–348 (2014)

    Article  Google Scholar 

  25. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, Curr. Appl. Phys. 14, 1192–1200 (2014)

    Article  Google Scholar 

  26. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M. Siu Li, J. Phys. D: Appl. Phys. 42, 175414 (2009)

    Article  Google Scholar 

  27. B. Garbarz-Glos, W. Bąk, M. Antonova, A. Budziak, K. Bormanis, C. Kajtoch, Ferroelecrrics 485(1), 173–178 (2015)

    Article  Google Scholar 

  28. T. Badapanda, S.K. Rout, S. Panigrahi, Ferroelectrics 385, 6177–6186 (2009)

    Article  Google Scholar 

  29. A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, A.S. Bhalla, Mater. Lett. 56(6), 933–940 (2002)

    Article  Google Scholar 

  30. X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106-1-084106-6 (2007)

    Article  Google Scholar 

  31. Y. Hotta, G.W.J. Hassink, T. Kawai, H. Tabata, Jpn. J. Appl. Phys. 42, 5908 (2003)

    Article  Google Scholar 

  32. Y. Zhi, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410–415 (2000)

    Article  Google Scholar 

  33. T. Hino, M. Nishida, T. Araki, T. Ohno, T. Kawahara, M. Murasugi, J. Laser Micro/Nanoeng. 2, 166–169 (2007)

    Article  Google Scholar 

  34. Y. Zhi, C. Ang, Z. Jing, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 1489–1493 (2002)

    Article  Google Scholar 

  35. B. Garbarz-Glos, W. Bąk, M. Antonova, M. Pawlik, Mat. Sci. Eng. 49, 012031 (2013)

    Google Scholar 

  36. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. 99(12), 124114-1-124114-8 (2006)

    Article  Google Scholar 

  37. N. Hannachi, I. Chaabane, K. Guidara, A. Bulou, F. Hiel, Mater. Sci. Eng. B 172, 24–32 (2010)

    Article  Google Scholar 

  38. L.P. Curecheriu, R. Frunza, A. Ianculescu, Appl. Ceram. 2, 81–88 (2008).

    Article  Google Scholar 

  39. X.L. Deng, D.J. Guo, W. Cai, C.L. Fu, Adm. Mater. Res. 412, 86–89 (2011)

    Article  Google Scholar 

  40. T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, P.K. Sahoo. J. Alloys Compd. 645, 586–596 (2015)

    Article  Google Scholar 

  41. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Sci. Rep. 5(1–9), 9953 (2015)

    Article  Google Scholar 

  42. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)

    Article  Google Scholar 

  43. P. Jha, A.K. Jha, Bull. Mater. Sci. 36(1), 135–141 (2013)

    Article  Google Scholar 

  44. P. Ganguly, A.K. Jha, K.L. Deori, Solid State Commun. 146, 472–477 (2008)

    Article  Google Scholar 

  45. P. Sateesh, J. Omprakash, G.S. Kumar, G. Prasad, J. Adv. Dielectr. 5(1), 1550002-1-1550002-13 (2015)

    Article  Google Scholar 

  46. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150–159 (2006)

    Article  Google Scholar 

  47. Q.K. Muhammad, M. Waqar, M.A. Rafiq, M.N. Rafiq, M. Usman, M.S. Anwar, J. Mater. Sci. 51(22), 10048–10058 (2016)

    Article  Google Scholar 

  48. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy. in Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (Wiley, Newark, 2005), pp. 1–26

    Google Scholar 

  49. B. Tiwari, R.N.P. Choudhary, J. Phys. Chem. Solids 69(11), 2852–2857 (2008)

    Article  Google Scholar 

  50. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56–62 (2007)

    Article  Google Scholar 

  51. A. Elbasset, F. Abdi, T. Lamcharfi, S. Sayouri, L.H. Omari, P. Bourson, A. Salhi, A. Elghandouri, Int. Rev. Phys. 8(5), 141–149 (2014)

    Google Scholar 

  52. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395, 98–103 (2007)

    Article  Google Scholar 

  53. R. Jacob, H.G. Nair, J. Isac, Proc. Appl. Ceram. 9(2), 73–79 (2015)

    Article  Google Scholar 

  54. T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Proc. Appl. Ceram. 8(3), 145–153 (2014)

    Article  Google Scholar 

  55. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  56. K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci. 26, 247–253 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to IMMT, Bhubaneshwar, India for providing impedance spectroscopy facility and Department of Metallurgical Engineering, NIT, Raipur, India for XRD and SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargavi, G.N., Khare, A., Badapanda, T. et al. Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity. J Mater Sci: Mater Electron 28, 16956–16964 (2017). https://doi.org/10.1007/s10854-017-7617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7617-8

Navigation