Skip to main content
Log in

Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tantalum nitride thin films are grown on silicon wafers using a mixture of Ar/N2 using DC magnetron sputtering. The influence of nitrogen concentration on various features of tantalum nitride thin films is systematically studied. X-ray diffraction results show characteristic peaks of FCC tantalum nitride with crystallite size gradually increasing upon an augmentation in the nitrogen concentration. Field emission scanning electron microscopy images indicate that the tantalum nitride thin films are made of crystal domains with almost regular boundaries. As nitrogen concentration increases from 10 to 25%, the average domain size increases. Atomic force microscopy (AFM) results show larger surface roughness for the tantalum nitride thin films with higher nitrogen concentration owing to grain boundary diffusivity. Furthermore, quantitative characterization of 3-D surface morphology from AFM micrographs is obtained by multifractal and stereometric analyses. The results of mechanical properties show a decrease in the hardness upon increasing the nitrogen concentration due to variation in the grain size. The obtained results from the four-point probe illustrate that the specimen with higher nitrogen content displays the minimum sheet resistance due to a decrease in inter-grain boundaries emanated from the larger grain size. The current study renders a new insight in controlling the conductivity and the hardness of TaN thin film based on the deposition conditions and provide a correlation between the structural and other properties of TaN films, which is useful for a variety of semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.E. Toth (ed.), Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), p. 279

    Google Scholar 

  2. W. Lengauer, in Nitrides and Carbonitrides: Handbook of Hard Materials, vol. 1. ed. by R. Riedel (Wiley-VCH, Weinheim, 2000), pp. 202–252

    Chapter  Google Scholar 

  3. A. Jafari, Z. Ghoranneviss, A.S. Elahi, M. Ghoranneviss, N.F. Yazdi, A. Rezaei, Adv Mech Eng 6, 373847 (2021)

    Article  Google Scholar 

  4. G. Bejarano-Gaitan, A.M. Echavarria-Garcia, A.C. Quirama-Ossa, J.A. Osorio-Velez, Rev. EIA 25, 69–80 (2016)

    Article  Google Scholar 

  5. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivailahti, Microelectron. Eng. 64, 289–297 (2002)

    Article  Google Scholar 

  6. N. Arshi, J. Lu, Y.K. Joo, J.H. Yoon, B.H. Koo, Surf. Interface Anal. 47, 154–160 (2015)

    Article  Google Scholar 

  7. Y.J. Lee, B.S. Suh, S.K. Rha, C.O. Park, Thin Solid Film 320, 141–146 (1998)

    Article  ADS  Google Scholar 

  8. G.S. Chen, S.T. Chen, L.C. Yang, P.Y. Lee, J. Vac. Sci. Technol. A 18, 720–723 (2000)

    Article  ADS  Google Scholar 

  9. K.H. Min, K.C. Chun, K.B. Kim, J. Vac. Sci. Technol. B 14, 3263–3269 (1996)

    Article  Google Scholar 

  10. J.C. Yang, B. Kolasa, J.M. Bibson, M. Yeadon, Appl. Phys. Lett. 73, 2841–2843 (1998)

    Article  ADS  Google Scholar 

  11. O. Hugh, Pierson: Handbook of Refractory Carbides and Nitrides, Properties, Characteristics, Processing and Applications (Noyes Publications, New Jersey, 1996)

    Google Scholar 

  12. L.E. Thod, Transition Metal Carbides and Nitrides (Academic, New York, 1971)

    Google Scholar 

  13. N. Arshi, J. Lu, C.G. Lee, B.H. Koo, F.J. Ahmed, Miner. Met. Mater. Soc. 66, 1893–1899 (2014)

    Article  Google Scholar 

  14. Q.X. Jia, H.J. Lee, E. Ma, W.A. Anderson, F.M. Collins, J. Mater. Res. 10, 1523 (1995)

    Article  ADS  Google Scholar 

  15. S. Tsukimoto, M. Moriyama, M. Murakami, Thin Solid Films 460(1–2), 222–226 (2004)

    Article  ADS  Google Scholar 

  16. J. Holloway et al., J. Appl. Phys. 71(11), 5433 (1992)

    Article  ADS  Google Scholar 

  17. J. Grill et al., J. Mater. Res. 7(12), 3260 (1992)

    Article  ADS  Google Scholar 

  18. J.L. Qi et al., Surf Coat Technol 405, 126724 (2021)

    Article  Google Scholar 

  19. B. Reshi, S. Kumar, A. Misra, R. Varma, Mater. Res. Express 6(4), 046407 (2019)

    Article  ADS  Google Scholar 

  20. S. Kumar, B. Reshi, R. Varma, Results Phys. 11, 461–474 (2018)

    Article  ADS  Google Scholar 

  21. B. Reshi, M. Kartha, A. Misra, R. Varma, Mater. Res. Express 6(9), 096420 (2019)

    Article  ADS  Google Scholar 

  22. M. Kartha, B. Reshi, P. Walke, D. Dastan, Ceram. Int. 48, 5066–5074 (2022)

    Article  Google Scholar 

  23. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, Ş Ţălu, Surf. Interfaces 18, 100463 (2020)

    Article  Google Scholar 

  24. J. Silva, K. Sekhar, R. Negrea, C. Ghica, D. Dastan, M. Gomes, Ceram. Int. 48, 6131–6137 (2022)

    Article  Google Scholar 

  25. A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Zh. Shi, H. Garmestani, A.S. Weidenbach, Ş Ţălu, J. Mater. Sci. Mater. Electron. 30, 21185–21198 (2019)

    Article  Google Scholar 

  26. Ş Ţălu, S. Kulesza, M. Bramowicz, K. Stępień, D. Dastan, Arch. Metall. Mater. 66(2), 443–450 (2021)

    Google Scholar 

  27. G. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q. Chu, J. Silva, X. Yin, Ceram. Int. 47, 17153–17160 (2021)

    Article  Google Scholar 

  28. H. Tajima, N. Shiobara, H. Katsumata, S. Uekusa, J. Surf. Anal. 17(3), dd247–dd251 (2011)

    Article  Google Scholar 

  29. S.A. Shostachenko, R.V. Zakharchenko, R.V. Ryzhuk, S.V. Leshchev, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 498, 012014 (2019)

    Article  Google Scholar 

  30. A. Zaman, E.I. Meletis, Coatings 7, 209 (2017)

    Article  Google Scholar 

  31. S.M. Kang, S.G. Yoon, S.J. Suh, D.H. Yoon, Thin Solid Films 516(11), 3568–3571 (2008)

    Article  ADS  Google Scholar 

  32. J.L. Vossen, S. Krommenhoek, A.V. Koss, J. Vac. Sci. Technol. A 3(9), 600–603 (1991)

    Article  ADS  Google Scholar 

  33. M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, N. Mattern, Thin Solid Films 307, 79–88 (1997)

    Article  ADS  Google Scholar 

  34. D. Dastan, N.B. Chaure, J. Mater. Mech. Manuf. 2(1), 21–24 (2014)

    Google Scholar 

  35. S. Tsukimoto, M. Moriyama, M. Murakami, Thin Solid Films 460, 222–226 (2004)

    Article  ADS  Google Scholar 

  36. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci: Mater. Electron. 27, 12291–12296 (2016)

    Google Scholar 

  37. G. Tan, D. Tang, D. Dastan, A. Jafari, J. Silva, X. Yin, Mater. Sci. Semicond. Process 122, 105506 (2021)

    Article  Google Scholar 

  38. X. Yin, W. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F. Wu, D. Dastan, H. Garmestani, Z. Shi, Ş Ţălu, J. Mater. Sci. Mater. Electron. 30, 14687–14694 (2019)

    Article  Google Scholar 

  39. A. Jafari, M. Mosavat, A. Meidanchi, H. Hossienkhani, J. Chem. Res. 42(2), 73–76 (2018)

    Article  Google Scholar 

  40. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci: Mater. Electron. 25, 3473–3479 (2014)

    Google Scholar 

  41. K. Shan, F. Zhai, Z. Yi, X. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    Article  Google Scholar 

  42. W. Zhou, D. Dastan, J. Li, X. Yin, Q. Wang, Nanomaterials 10(4), 785 (2020)

    Article  Google Scholar 

  43. W. Zhou, D. Dastan, X. Yin, S. Nie, S. Wu, Q. Wang, J. Li, J. Mater. Sci. Mater. Electron. 31, 18412–18426 (2020)

    Article  Google Scholar 

  44. D. Dastan, J. At. Mol. Condens. Nano Phys. (JAMCNP) 2(2), 109–114 (2015)

    Article  Google Scholar 

  45. K. Shan, Z. Yi, X. Yin, D. Dastan, S. Dadkhah, B. Coates, H. Garmestani, Adv. Powder Technol. 31, 4657–4664 (2020)

    Article  Google Scholar 

  46. K. Shan, Z. Yi, X. Yin, D. Dastan, F. Altaf, H. Garmestani, F. Alamgir, Surf. Interfaces 21, 100762 (2020)

    Article  Google Scholar 

  47. T. Rikkinen, J. Molarius, T. Laurila, A. Nurmela et al., Microelectron. Eng. 64, 289 (2002)

    Article  Google Scholar 

  48. R. Gonçalves, R. Toledo, N. Joshi, O. Berengue, Mater. Adv. 2, 4190 (2021)

    Article  Google Scholar 

  49. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. Oliveira Jr., L. Lin, Microchim. Acta 185, 213 (2018)

    Article  Google Scholar 

  50. C.S. Shin, Y.W. Kim, D. Gall, J.E. Greene, I. Petrov, Thin Solid Films 402, 172–182 (2002)

    Article  ADS  Google Scholar 

  51. G.F. Iriarte, J.G. Rodríguez, F. Calle, Mater. Res. Bull. 45(9), 1039–1104 (2021)

    Article  Google Scholar 

  52. D. Dastan, Appl. Phys. A 123(699), 1–13 (2017)

    ADS  Google Scholar 

  53. M. Naftaly et al., Electronics 10, 960 (2021)

    Article  Google Scholar 

  54. A.J. Dammers, S. Radelaar, Textures Microstruct. 14, 757 (1991)

    Article  Google Scholar 

  55. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron. 28, 7784–7796 (2017)

    Article  Google Scholar 

  56. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Ceram. Int. 47, 5487–5494 (2021)

    Article  Google Scholar 

  57. N.D. Cuong, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 1398 (2006)

    Article  ADS  Google Scholar 

  58. S.K. Mukherjee, L. Joshi, P.K. Barhai, Surf. Coat. Technol 205, 4582–4595 (2011)

    Article  Google Scholar 

  59. A. Tiwari, H. Wang, D. Kumar, J. Naryan, Mod. Phys. Lett. B 16, 1143 (2002)

    Article  ADS  Google Scholar 

  60. H. Qiu, F. Wang, P. Wu, L. Pan, Vacuum 66, 447–452 (2002)

    Article  ADS  Google Scholar 

  61. K. Mech, R. Kowalik, P. Zabinski, Arch. Metall. Mater. 56, 903–908 (2011)

    Google Scholar 

  62. N. Bahlawane, P.A. Premkumar, F. Reilmann, K. Kohse-Höinghaus, J. Wang, F. Qi, B. Gehl, M. Bäumer, J. Electrochem. Soc. 156, D452–D455 (2009)

    Article  Google Scholar 

  63. Y. Jiao, Z. Huang, W. Hu, X. Li, Q. Yu, Y. Wang, Y. Zhou, D. Dastan, Mater. Sci. Eng. A 820, 141524 (2021)

    Article  Google Scholar 

  64. L. Liu, Y.Y. Sheng, M. Liu, M. Dienwiebel, Z. Zhang, D. Dastan, Tribol. Int. 140, 105727 (2019)

    Article  Google Scholar 

  65. L. Liu, C. Yang, J. Zhou, H. Garmestani, D. Dastan, Prot. Met. Phys. Chem. Surf. 57(2), 367–373 (2021)

    Article  Google Scholar 

  66. S. Xu et al., Surf. Coat. Technol. 307, 470–475 (2016)

    Article  Google Scholar 

  67. C.S. Shin, D. Gall, P. Desjardins, A. Vailionis, H. Kim, I. Petrov, J.E. Greene, Appl. Phys. Lett. 75, 3808 (1999)

    Article  ADS  Google Scholar 

  68. D. Kim, H. Lee, D. Kim, Y.K. Kim, J. Cryst. Growth 283, 404–408 (2005)

    Article  ADS  Google Scholar 

  69. S.-I. Baik, Y.-W. Kim, Appl. Microsc. 50, 7 (2020)

    Article  Google Scholar 

  70. D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, R. Spolenak, Thin Solid Films 548, 157–161 (2013)

    Article  ADS  Google Scholar 

  71. S.K. Kim, B.C. Cha, Thin Solid Films 475, 202–207 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. Jafari thanks the Foundation for Polish Science financed by the European Union under the European Regional Development Fund (POIR.04.04.00-00-3ED8/17). This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-21-DR-31). The authors, therefore, acknowledge with thanks the University of Jeddah technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davoud Dastan, Xi-Tao Yin or Zhicheng Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Shan, K., Jafari, A. et al. Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering. Appl. Phys. A 128, 400 (2022). https://doi.org/10.1007/s00339-022-05501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05501-4

Keywords

Navigation