Skip to main content

Advertisement

Log in

Effect of Sc, V, Zr, and Hf doping on the mechanical properties of TiB3 under high pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of 3d-Sc, 3d-V, 4d-Zr, and 5d-Hf doping on the mechanical properties of the TiB3 has been investigated in the pressure range of 0–200 GPa by using first-principles calculations. On the basis of verifying the structure stability of the TiB3, its doping is studied. By calculating the elastic constants and phonon dispersion, it is confirmed that the doped structures satisfy the mechanical and dynamic stability. And the mechanical properties of the doped structures are calculated. It is found that the toughness of the Ti0.75V0.25B3, Ti0.75Zr0.25B3 and Ti0.75Hf0.25B3 increases, and the elastic isotropy of the Ti0.75Zr0.25B3 and Ti0.75Hf0.25B3 increases, while the Vickers hardness of the Ti0.75TM0.25B3 (TM = Sc, V, Zr, and Hf) decreases except for the Ti0.75Sc0.25B3. The analysis of the density of states, electronic local functions and bond length implies that the enhancement of mechanical properties of the Ti0.75Sc0.25B3 is mainly due to the enhancement of Sc-B covalent bond strength, and the weakening of mechanical properties of the Ti0.75V0.25B3 is mainly due to the weakening of B-B and V-B covalent bond strength. And the weakening of B-B covalent bond strength leads to the decrease of mechanical properties of the Ti0.75Zr0.25B3 and Ti0.75Hf0.25B3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Occelli, P. Loubeyre, R. LeToullec, Nat. Mater. 2, 151 (2003)

    Article  ADS  Google Scholar 

  2. Y. Zhang, H. Sun, C. Chen, Phys. Rev. B 73, 144115 (2006)

    Article  ADS  Google Scholar 

  3. R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005)

    Article  Google Scholar 

  4. H.Y. Chung, M.B. Weinberger, J.B. Levine, R.W. Cumberland, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner, Science 316, 436 (2007)

    Article  ADS  Google Scholar 

  5. S. Wei, D. Li, Y. Lv, Z. Liu, F. Tian, D. Duan, B. Liu, T. Cui, J. Alloys Compd. 688, 1101 (2016)

    Article  Google Scholar 

  6. H. Niu, J. Wang, X.-Q. Chen, D. Li, Y. Li, P. Lazar, R. Podloucky, A.N. Kolmogorov, Phys. Rev. B 85, 144116 (2012)

    Article  ADS  Google Scholar 

  7. X. Zhang, J. Qin, X. Sun, Y. Xue, M. Ma, R. Liu, Phys. Chem. Chem. Phys. 15, 20894 (2013)

    Article  Google Scholar 

  8. B. Decker, J. Kasper, Acta Crystallographica 7, 77 (1954)

    Article  Google Scholar 

  9. J. Murray, P. Liao, K. Spear, Bull. Alloy Phase Diagr. 7, 550 (1986)

    Article  Google Scholar 

  10. K.E. Spear, P. Mcdowell, F. Mcmahon, J. Am. Ceram. Soc. 69, 4 (1986)

    Article  Google Scholar 

  11. F. Peng, H.-Z. Fu, X.-L. Cheng, Physica B. 400, 83 (2007)

    Article  ADS  Google Scholar 

  12. M. Wang, Physica Scripta 89, 115702 (2014)

    Article  ADS  Google Scholar 

  13. G. Shwetha, A.N.A. Aparajita, S. Chandra, N.V. Chandra Shekar, S. Kalavathi, Mater. Res. Express 6, 026531 (2018)

    Article  ADS  Google Scholar 

  14. M. Sun, C.-Y. Wang, J.-P. Liu, Chin. Phys. B 27, 077103 (2018)

    Article  ADS  Google Scholar 

  15. D.M. Hoat, Comput. Condens. Matter 21, e00406 (2019)

    Article  Google Scholar 

  16. F. Ling, K. Luo, L. Hao, Y. Gao, Z. Yuan, Q. Gao, Y. Zhang, Z. Zhao, J. He, D. Yu, ACS Omega 5, 4620 (2020)

    Article  Google Scholar 

  17. P. Li, R. Zhou, X.C. Zeng, ACS Appl. Mater. Interfaces 7, 15607 (2015)

    Article  Google Scholar 

  18. Y. Pan, Y. Jia, J. Mater. Res. 34, 3554 (2019)

    Article  ADS  Google Scholar 

  19. Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 20, 3620 (2008)

    Article  Google Scholar 

  20. Y. Long, C. Zou, X. Zheng, H.-T. Lin, F. Zhang, C. Wang, L. An, J. Am. Ceram. Soc. 101, 151 (2018)

    Article  Google Scholar 

  21. Y. Pan, Y. Lin, Int. J. Quantum Chem. 120, e26217 (2020)

    Google Scholar 

  22. X.P. Du, Y.X. Wang, Phys. Status Solidi RRL 3, 106 (2009)

    Article  Google Scholar 

  23. F. Lin, K. Wu, J. He, R. Sa, Q. Li, Y. Wei, Chem. Phys. Lett. 494, 31 (2010)

    Article  ADS  Google Scholar 

  24. Y. Tu, Y. Wang, Solid State Commun. 151, 238 (2011)

    Article  ADS  Google Scholar 

  25. H. Euchner, P.H. Mayrhofer, H. Riedl, F.F. Klimashin, A. Limbeck, P. Polcik, S. Kolozsvari, Acta Mater. 101, 55 (2015)

    Article  ADS  Google Scholar 

  26. G. Akopov, M.T. Yeung, Z.C. Sobell, C.L. Turner, C.-W. Lin, R.B. Kaner, Chem. Mater. 28, 6605 (2016)

    Article  Google Scholar 

  27. Y. Pan, D. Pu, G. Liu, P. Wang, Ceram. Int. 46, 16605 (2020)

    Article  Google Scholar 

  28. Y. Pan, Y. Lin, C. Tong, J. Phys. Chem. C 120, 21762 (2016)

    Article  Google Scholar 

  29. M. Segall, P.J. Lindan, M.A. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, M. Payne, J. Phys. Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  30. L.A. Constantin, J.P. Perdew, J.M. Pitarke, Phys. Rev. B 79, 7 (2009)

    Google Scholar 

  31. X. Gonze, F. Finocchi, Phys. Scr. 2004, 40 (2004)

    Article  Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  34. Y.X. Wang, Appl. Phys. Lett. 91, 101904 (2007)

    Article  ADS  Google Scholar 

  35. A. Šimůnek, Phys. Rev. B 80, 060103 (2009)

    Article  ADS  Google Scholar 

  36. Y. Akahama, H. Kawamura, T. Le Bihan, Phys. Rev. Lett. 87, 275503 (2001)

    Article  ADS  Google Scholar 

  37. A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Nature 457, 863 (2009)

    Article  ADS  Google Scholar 

  38. Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  39. Z.-C. Zhao, C.-L. Yang, M.-S. Wang, X.-G. Ma, L.-B. Zhan, Y.-G. Yi, RSC Adv. 7, 37943 (2017)

    Article  ADS  Google Scholar 

  40. S. Wang, Y. Pan, Y. Lin, C. Tong, Comp. Mater. Sci. 146, 18 (2018)

    Article  Google Scholar 

  41. S. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  42. J. Haines, J. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  43. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  44. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  45. X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  46. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. H. 33, 93 (2012)

    Article  Google Scholar 

  47. P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B 63, 045115 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Innovation Fund Project of Colleges and Universities in Gansu Province (No. 2020A-039), the Key Natural Science Foundation of Gansu Province (No. 20JR5RA427), the Key Talent Foundation of Gansu Province (No. 2020RCXM100), and the Natural Science Foundation for Distinguished Young Scholars of Gansu Province (No. 145RJDA323).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Hong Tian or Xiao-Wei Sun.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MR., Tian, JH., Song, T. et al. Effect of Sc, V, Zr, and Hf doping on the mechanical properties of TiB3 under high pressure. Appl. Phys. A 128, 305 (2022). https://doi.org/10.1007/s00339-022-05363-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05363-w

Keywords

Navigation