Skip to main content

Advertisement

Log in

Shock front detachment during pulsed laser ablation of graphite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation of pyrolytic graphite with a 5.7 J/cm\(^2\) frequency-doubled Nd:YAG laser in backgrounds of argon, nitrogen, and mixed gas at pressures from 3 to 180 Torr was performed to study the dynamics of the ablation shock wave and plume emissive contact front. White light schlieren shock wave imaging and optical emission imaging with a 2.88–40 ns gated ICCD camera was used to determine shock wave and emissive plume trajectories to find the location of shock detachment from the plume and for blast energy characterization by Sedov-Taylor theory. The shock detachment points are used to limit emissive contact front Sedov-Taylor fits to the portion of the plume which exhibits a shock-like trajectory, resulting in improved laser-plume coupling energy estimates compared to standard fits. The emissive plume expands with initial Mach numbers up to M \(\sim \) 54 at t = 62 ns, decreasing to M \(\sim \) 7 as the emission becomes too weak to detect after several microseconds. The shock wave expands with initial Mach numbers up to M \(\sim \) 55 at t = 62 ns, decreasing to M \(\sim \) 1 at t = 20 µs. The shock waves exhibit spherical shock fronts, but the dimensionality, n, decreases as pressure and mass of the background gas increase, while the plumes exhibit an opposite trend. The Sedov-Taylor energy released in the sudden ablation is typically 55–75% of the laser pulse energy. The detachment-limited blast energy calculations for the emissive plume agree to within 3–5% of the shock wave energy values. Shock detachment points are nearer the target at higher pressure and scale with the mean free path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code generated during the current study is available from the corresponding author on reasonable request.

References

  1. A.O. Dikovska, M.T. Alexandrov, G.B. Atanasova, N.T. Tsankov, P.K. Stefanov, Appl. Phys. A Mater. Sci. Process. 113, 83 (2013). https://doi.org/10.1007/s00339-013-7834-9

    Article  ADS  Google Scholar 

  2. S. Machmudah, Wahyudiono, N. Takada, H. Kanda, K. Sasaki, M. Goto, Adv. Nat. Sci. Nanosci. Nanotech. 4(4), 045011 (2013). https://doi.org/10.1088/2043-6262/4/4/045011

    Article  Google Scholar 

  3. M. Stafe, N. Niculae, A. Marcus, Pulsed laser ablation of solids, 1st edn. (Springer Science & Business Media, Berlin Heidelberg, 2014). 978-3-642-40978-3

  4. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A Mater. Sci. Process. 73(2), 199 (2001). https://doi.org/10.1007/s003390000686

    Article  ADS  Google Scholar 

  5. C.J. Druffner, P.D. Kee, M.A. Lange, G.P. Perram, R.R. Biggers, P.N. Barnes, J. Dir. Energy 1(3), 203 (2005)

    Google Scholar 

  6. Y. Chang, C.M. Yee, W.P. Fahy, A. Kafi, S. Bateman, H. Wu, J.H. Koo, in AIAA Scitech 2021 Forum (American Institute of Aeronautics and Astronautics, Inc., 2021), p. 671. https://doi.org/10.2514/6.2021-0671

  7. M. Natali, J.M. Kenny, L. Torre, Prog. Mater Sci. 84, 192 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003

    Article  Google Scholar 

  8. B. Anderberg, M.L. Wolbarsht, Laser Weapons, 1st edn. (Springer, US New York, 1992). https://doi.org/10.1007/978-1-4899-6094-8

    Book  Google Scholar 

  9. G.P. Perram, S.J. Cusumano, S.T. Fiorino, R.L. Hengehold, An introduction to laser weapon systems (Directed Energy Professional Society, Albuquerque, New Mexico, 2010)

  10. J.G. Jones, A.A. Voevodin, Surf. Coat. Technol. 184(1), 1 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.016

    Article  Google Scholar 

  11. D.B. Chrisey, G.K. Hubler (Eds.), Pulsed Laser Deposition of Thin Films Wiley, New York, 1994

  12. M.W. Stapleton, A.P. McKiernan, J.P. Mosnier, J. Appl. Phys. 97(6), 064904 (2005). https://doi.org/10.1063/1.1840099

    Article  ADS  Google Scholar 

  13. B. Robb, D. Turcotte, in Society of Naval Architects and Marine Engineers, and US Navy, Advanced Marine Vehicles Meeting (1972), p. 720. https://doi.org/10.2514/6.1972-720

  14. B.S. Robb, D.L. Turcotte, AIAA J. 11(6), 836 (1973). https://doi.org/10.2514/3.50522

    Article  ADS  Google Scholar 

  15. P. Dyer, A. Issa, P. Key, Appl. Surf. Sci. 46(1–4), 89 (1990). https://doi.org/10.1016/0169-4332(90)90125-J

    Article  ADS  Google Scholar 

  16. P. Dyer, A. Issa, P. Key, Appl. Phys. Lett. 57(2), 186 (1990). https://doi.org/10.1063/1.103979

    Article  ADS  Google Scholar 

  17. J. Bobin, Y. Durand, P.P. Langer, G. Tonon, J. Appl. Phys. 39(9), 4184 (1968). https://doi.org/10.1063/1.1656945

    Article  ADS  Google Scholar 

  18. P.L. Ventzek, R.M. Gilgenbach, J.A. Sell, D.M. Heffelfinger, J. Appl. Phys. 68(3), 965 (1990). https://doi.org/10.1063/1.346661

    Article  ADS  Google Scholar 

  19. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, H. Huegel, Appl. Phys. A 69(1), S505 (1999). https://doi.org/10.1007/s003390051454

    Article  ADS  Google Scholar 

  20. R. Pini, R. Salimbeni, M. Vannini, G. Toci, Appl. Phys. B 61(5), 505 (1995). https://doi.org/10.1007/BF01081281

    Article  ADS  Google Scholar 

  21. S. Jeong, R. Greif, R. Russo, J. Phys. D Appl. Phys. 32(19), 2578 (1999). https://doi.org/10.1088/0022-3727/32/19/316

    Article  ADS  Google Scholar 

  22. M. Gatti, V. Palleschi, A. Salvetti, D. Singh, M. Vaselli, Opt. Commun. 69(2), 141 (1988). https://doi.org/10.1016/0030-4018(88)90299-4

    Article  ADS  Google Scholar 

  23. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85(11), 7552 (1999). https://doi.org/10.1063/1.370553

    Article  ADS  Google Scholar 

  24. H. Kurniawan, K. Lahna, T.J. Lie, K. Kagawa, M.O. Tjia, Appl. Spectrosc. 55(1), 92 (2001). https://doi.org/10.1366/0003702011951308

    Article  ADS  Google Scholar 

  25. K. Gahagan, D. Moore, D. Funk, J. Reho, R. Rabie, J. Appl. Phys. 92(7), 3679 (2002). https://doi.org/10.1063/1.1505976

    Article  ADS  Google Scholar 

  26. P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartnicki, J. Appl. Phys. 84(11), 5985 (1998). https://doi.org/10.1063/1.368894

    Article  ADS  Google Scholar 

  27. G. Callies, P. Berger, H. Hugel, J. Phys. D Appl. Phys. 28(4), 794 (1995). https://doi.org/10.1088/0022-3727/28/4/026

    Article  ADS  Google Scholar 

  28. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, A.C. Raga, Appl. Phys. Lett. 77(20), 3158 (2000). https://doi.org/10.1063/1.1324986

    Article  ADS  Google Scholar 

  29. C. Wilson, D. Turcotte, J. Fluid Mech. 43(2), 399 (1970). https://doi.org/10.1017/S0022112070002446

    Article  ADS  Google Scholar 

  30. R. Kelly, J. Chem. Phys. 92(8), 5047 (1990). https://doi.org/10.1063/1.458540

    Article  ADS  Google Scholar 

  31. R. Kelly, B. Braren, Appl. Phys. B 53(3), 160 (1991). https://doi.org/10.1007/BF00330232

    Article  ADS  Google Scholar 

  32. W. Gretler, R. Regenfelder, Fluid Dyn. Res. 30(5), 293 (2002). https://doi.org/10.1016/s0169-5983(02)00058-8

    Article  ADS  Google Scholar 

  33. X. Chen, B. Bian, Z. Shen, J. Lu, X. Ni, Microw. Opt. Technol. Lett. 38(1), 75 (2003). https://doi.org/10.1002/mop.10975

    Article  Google Scholar 

  34. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, Appl. Phys. Lett. 99(13), 131506 (2011). https://doi.org/10.1063/1.3645631

    Article  ADS  Google Scholar 

  35. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, M. Polek, J. Appl. Phys. 109(5), 053302 (2011). https://doi.org/10.1063/1.3555679

    Article  ADS  Google Scholar 

  36. F. Claeyssens, M.N. Ashfold, E. Sofoulakis, C.G. Ristoscu, D. Anglos, C. Fotakis, J. Appl. Phys. 91(9), 6162 (2002). https://doi.org/10.1063/1.1467955

    Article  ADS  Google Scholar 

  37. S.J. Henley, J.D. Carey, S.R. Silva, G.M. Fuge, M.N. Ashfold, D. Anglos, Physi. Rev. B Condens. Matter Mater. Phys. 72(20), 1 (2005). https://doi.org/10.1103/PhysRevB.72.205413

    Article  Google Scholar 

  38. A. Kushwaha, R.K. Thareja, Appl. Opt. 47(31), G65 (2008). https://doi.org/10.1364/ao.47.000g65

    Article  Google Scholar 

  39. C. Ursu, P. Nica, C. Focsa, M. Agop, Complexity (2018). https://doi.org/10.1155/2018/1814082

    Article  Google Scholar 

  40. C. Ursu, P. Nica, C. Focsa, Appl. Surf. Sci. 456(June), 717 (2018). https://doi.org/10.1016/j.apsusc.2018.06.217

    Article  ADS  Google Scholar 

  41. C. Ursu, P. Nica, B. Rusu, C. Focsa, Spectrochim. Acta Part B 163(2020), 105743 (2020). https://doi.org/10.1016/j.sab.2019.105743

    Article  Google Scholar 

  42. H. Yousfi, S. Abdelli-Messaci, O. Ouamerali, A. Dekhira, Spectrochim. Acta Part B At. Spectrosc. 142, 97 (2018). https://doi.org/10.1016/j.sab.2018.02.006

    Article  ADS  Google Scholar 

  43. N. Basov, O. Krokhin, G. Sklizkov, J. Exp. Theor. Phys. Lett. 6(168), 683 (1967)

    Google Scholar 

  44. N. Basov, V. Gribkov, O. Krokhin, G. Sklizkov, J. Exp. Theor. Phys. Lett. 27(4), 575 (1968)

    ADS  Google Scholar 

  45. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, S. Iijima, Appl. Phys. A Mater. Sci. Process. 69, S223 (1999). https://doi.org/10.1007/s003399900216

    Article  ADS  Google Scholar 

  46. R.P. Singh, S.L. Gupta, R.K. Thareja, Phys. Plasmas 20, 12 (2013). https://doi.org/10.1063/1.4846897

    Article  Google Scholar 

  47. A.A. Puretzky, D.B. Geohegan, R.E. Haufler, R.L. Hettich, X.Y. Zheng, R.N. Compton, in AIP Conference Proceedings, vol. 288. American Institute of Physics (AIP, 1993), vol. 288, pp. 365–374. https://doi.org/10.1063/1.44881

  48. W. Bauer, G. Perram, JOSA B 35(10), B27 (2018). https://doi.org/10.1364/JOSAB.35.000B27

    Article  Google Scholar 

  49. L.I. Sedov, Similarity and dimensional methods in mechanics (Academic Press, New York, 1959)

    MATH  Google Scholar 

  50. G.I. Taylor, Proc. R. Soc. London Ser. A Math. Phys. Sci. (1950). https://doi.org/10.1098/rspa.1950.0049

    Article  Google Scholar 

  51. G.A. Askar’yan, M.S. Rabinovich, M.M. Savchenko, V.K. Stepanov, ZhETF Pisma Redaktsiiu 5, 121 (1967)

    ADS  Google Scholar 

  52. J.M. Gordon, K.C. Gross, G.P. Perram, Combust. Explos. Shock Waves 49(4), 450 (2013). https://doi.org/10.1134/S0010508213040084

    Article  Google Scholar 

  53. G.T. Phillips, W.A. Bauer, C.D. Fox, A.E. Gonzales, N.C. Herr, R.C. Gosse, G.P. Perram, Opt. Eng. 56(1), 11013 (2016). https://doi.org/10.1117/1.OE.56.1.011013

    Article  Google Scholar 

  54. A.E. Gonzales, N.C. Herr, G.P. Perram, Combust. Flame 192, 180 (2018). https://doi.org/10.1016/j.combustflame.2018.01.045

    Article  Google Scholar 

  55. N.C. Herr, A.E. Gonzales, G.P. Perram, Polym. Degrad. Stab. 152, 147 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.04.007

    Article  Google Scholar 

  56. T.I. Calver, W.A. Bauer, C.A. Rice, G.P. Perram, Opt. Eng. 60(5), 1 (2021). https://doi.org/10.1117/1.OE.60.5.057103

    Article  Google Scholar 

  57. GraphiteStore.com. PG-SN Pyrolytic Graphite Data Sheet (2020). http://www.graphitestore.com

  58. A. Butland, R. Maddison, J. Nucl. Mater. 49(1), 45 (1973). https://doi.org/10.1016/0022-3115(73)90060-3

    Article  ADS  Google Scholar 

  59. G. Glockler, J. Chem. Phys. 22(59), 159 (1954). https://doi.org/10.1063/1.1740023

    Article  ADS  Google Scholar 

  60. C.D. Roberts, M.A. Marciniak, G.P. Perram, in Laser-Induced Damage in Optical Materials: 2011, vol. 8190, ed. by G.J. Exarhos, V.E. Gruzdev, J.A. Menapace, D. Ristau, M.J. Soileau (International Society for Optics and Photonics, Boulder, 2011), vol. 8190, p. 81901F. https://doi.org/10.1117/12.899255

  61. A.E. Hussein, P.K. Diwakar, S.S. Harilal, A. Hassanein, J. Appl. Phys. 113(14), 143305 (2013). https://doi.org/10.1063/1.4800925

    Article  ADS  Google Scholar 

  62. C. Phelps, C.J. Druffner, G.P. Perram, R.R. Biggers, J. Phys. D Appl. Phys. 40(15), 4447 (2007). https://doi.org/10.1088/0022-3727/40/15/010

    Article  ADS  Google Scholar 

  63. W. Bauer, G.P. Perram, T. Haugan, J. Appl. Phys. 123(9), 095304 (2018). https://doi.org/10.1063/1.5011028

    Article  ADS  Google Scholar 

  64. J. Wu, X. Li, W. Wei, S. Jia, A. Qiu, Phys. Plasmas 20, 11 (2013). https://doi.org/10.1063/1.4835255

    Article  Google Scholar 

  65. Y.B. Zel’Dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, dover, 2002nd edn. (Dover Publications Inc., Mineola, New York, 2002)

    Google Scholar 

  66. S. Mahmood, R.S. Rawat, S.V. Springham, T.L. Tan, P. Lee, Appl. Phys. A 101(4), 695 (2010). https://doi.org/10.1007/s00339-010-5951-2

    Article  ADS  Google Scholar 

  67. Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kántor, Z. Bor, Appl. Phys. A 69(1), S133 (1999). https://doi.org/10.1007/s003399900293

    Article  ADS  Google Scholar 

  68. W. Bauer, G. Perram, T. Haugan, Laser-Induc. Damage Opt. Mater. 2016 10014(2016), 100140S (2016). https://doi.org/10.1117/12.2245185

    Article  Google Scholar 

  69. A. Misra, A. Mitra, R.K. Thareja, Appl. Phys. Lett. 74, 929 (1999). https://doi.org/10.1063/1.123412

    Article  ADS  Google Scholar 

  70. R.F. Wood, K.R. Chen, J.N. Leboeuf, A.A. Puretzky, D.B. Geohegan, Phys. Rev. Lett. 79(8), 1571 (1997). https://doi.org/10.1103/PhysRevLett.79.1571

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Dr. Mark Gragston of the University of Tennessee Space Institute for technical advice regarding the white-light LED source.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this study. Preparation, data collection, analysis, and principal authorship were performed by Dr. Timothy I. Calver. Laboratory space/equipment were provided by Dr. Glen P. Perram and Dr. Michael B. Shattan. Research oversight and guidance were provided by Dr. Perram and Dr. Shattan. The first draft and revision of the manuscript were written by Dr. Calver and all authors commented on previous manuscript versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Timothy I. Calver.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calver, T.I., Shattan, M.B. & Perram, G.P. Shock front detachment during pulsed laser ablation of graphite. Appl. Phys. A 128, 15 (2022). https://doi.org/10.1007/s00339-021-05146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05146-9

Keywords

Navigation