Skip to main content
Log in

Expansion of laser-induced plume after the passage of a counter shock wave through a background gas

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Double-pulsed laser ablation with two targets and lasers in a background gas is a method to form nanoparticle complex. Effects of pulse delay between two lasers on plume expansion dynamics are discussed. The germanium and silicon targets were set parallel to each other and irradiated by two YAG lasers. The germanium target was irradiated followed by irradiation of the silicon target with delay time, td. We found that the expansion distance of delayed silicon plume is enhanced for 2 µs ≤ td ≤ 50 µs, compared to that when only the silicon target is irradiated. For td = 200 µs, the expansion distance of delayed silicon plume is similar to that when only the silicon target is irradiated. We discuss the expansion dynamics of the delayed silicon plume based on the effect of the density distribution induced by the primary germanium plume. Our results indicate that the effect of primary germanium plume remains up to about td = 50 µs, and it disappears by td = 200 µs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Yoshida, S. Takeyama, Y. Yamada, K. Mutoh, Appl. Phys. Lett. 68(13), 1772 (1996)

    Article  ADS  Google Scholar 

  2. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  3. I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, M. Takata, Phys. Rev. B 76, 666 (2007)

    Article  Google Scholar 

  4. T. Yoshida, N. Yagi, R. Nakagou, A. Sugimura, I. Umezu, Appl. Phys. A 117, 223 (2014)

    Article  ADS  Google Scholar 

  5. Y.K. Jo, S.B. Wen, J. Phys. D 44, 305301 (2011)

    Article  ADS  Google Scholar 

  6. K. Katayama, Y. Horai, H. Fukuoka, T. Kinoshita, T. Yoshida, T. Aoki, I. Umezu, Appl. Phys. A 124, 045328 (2018)

    Article  Google Scholar 

  7. T. Kinoshita, H. Fukuoka, I. Umezu, Mater. Sci. Forum 910, 96 (2018)

    Article  Google Scholar 

  8. I. Umezu, Y. Hashiguchi, H. Fukuoka, N. Sakamoto, T. Aoki, A. Sugimura, Appl. Phys. A 122, 485 (2016)

    Article  Google Scholar 

  9. I. Umezu, N. Sakamoto, H. Fukuoka, Y. Yokoyama, K. Nobuzawa, A. Sugimura, Appl. Phys. A 110, 629 (2012)

    Article  ADS  Google Scholar 

  10. I. Umezu, S. Yamamoto, A. Sugimura, Appl. Phys. A 101, 133 (2010)

    Article  ADS  Google Scholar 

  11. G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta Part B 61, 340 (2006)

    Article  ADS  Google Scholar 

  12. P.K. Diwakar, S.S. Harilal, J.R. Freeman, A. Hassanein, Spectrochim. Acta Part B 87, 65 (2013)

    Article  ADS  Google Scholar 

  13. E. Tognoni, G. Cristoforetti, J. Anal. Atom. Spectrom. 29, 1318 (2014)

    Article  Google Scholar 

  14. X. Li, Z. Yang, J. Wu, J. Han, W. Wei, S. Jia, A. Qiu, J. Appl. Phys. 119, 133301 (2016)

    Article  ADS  Google Scholar 

  15. P. Hough, C. McLoughlin, S.S. Harilal, J.P. Mosnier, J.T. Costello, J. Appl. Phys. 107, 024904 (2010)

    Article  ADS  Google Scholar 

  16. C. Sánchez-Aké, D. Mustri-Trejo, T. García-Fernández, M. Villagran-Muniz, Spectrochim. Acta Part B 65, 401 (2010)

    Article  ADS  Google Scholar 

  17. K.F. Al-Shboul, S.S. Harilal, S.M. Hassan, A. Hassanein, J.T. Costello, T. Yabuuchi, K.A. Tanaka, Y. Hirooka, Phys. Plasmas 21, 013502 (2014)

    Article  ADS  Google Scholar 

  18. K.F. Al-Shboul, S.M. Hassan, S.S. Harilal, Plasma Sources Sci. Technol. 25, 065017 (2016)

    Article  ADS  Google Scholar 

  19. Y. Hirooka, H. Sato, K. Ishihara, T. Yabuuchi, K.A. Tanaka, Nucl. Fusion 54, 022003 (2014)

    Article  ADS  Google Scholar 

  20. R.A. Smith, J. Lazarus, M. Hohenberger, A. Marocchino, J.S. Robinson, J.P. Chittenden, A.S. Moore, E.T. Gumbrell, M. Dunne, Plasma Phys. Control Fusion 49, B117 (2007)

    Article  ADS  Google Scholar 

  21. M. Villagran-Muniz, H. Sobral, R. Navarro-González, P.F. Velázquez, A.C. Raga, Plasma Phys. Control Fusion 45, 571 (2003)

    Article  ADS  Google Scholar 

  22. P. Velarde, D. García-Senz, E. Bravo, F. Ogando, A. Relaño, C. García, E. Oliva, Phys. Plasmas 13, 092901 (2006)

    Article  ADS  Google Scholar 

  23. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966)

    Google Scholar 

  24. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  25. H.L. Brode, J. Appl. Phys. 26, 766 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z. Yang, J. Wu, W. Wei, X. Li, J. Han, S. Jia, A. Qiu, Phys. Plasmas 23, 083523 (2016)

    Article  ADS  Google Scholar 

  27. J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, M. Maeda, Appl. Phys. Lett. 77, 2334 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant No. JP19K03815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikurou Umezu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higo, A., Katayama, K., Fukuoka, H. et al. Expansion of laser-induced plume after the passage of a counter shock wave through a background gas. Appl. Phys. A 126, 304 (2020). https://doi.org/10.1007/s00339-020-03476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03476-8

Keywords

Navigation