Skip to main content
Log in

Effects of sintering temperature on the microstructure and thermoelectric properties of mesostructured Co4Sb11.5Te0.5 skutterudites dispersed nano-TiN

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mesostructured skutterudites Co4Sb11.5Te0.5 + nano-TiN composites are prepared through ball milling and spark plasma sintering (SPS). The influence of the various SPS temperatures within the range of 813–933 K on the microstructure and thermoelectric properties are focus in this work. The average grain sizes of the skutterudites increase from ~ 110 to ~ 500 nm with the increasing SPS temperature, while the densities of composites decrease from 7.02 to 6.26 g cm−3. Additionally, the phase of CoTe2 is detected in the samples sintered at 903–933 K. With the SPS temperature increasing from 813 to 903 K, the electrical conductivity and thermal conductivity increase simultaneously, and then decrease when SPS temperature rises to 933 K. The absolute value of Seebeck coefficient shows no clear changes when SPS temperature is not higher than 873 K but then slightly decreases with the increasing of SPS temperature. At last, the optimum SPS temperature is determined as 873 K, the ZT value of 1.07 at 800 K for the sample SPSed at 873 K is obtained, which is 11.5% higher than that of the sample SPSed at 903 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. M.R. Bravo, A. Moure, J.F. Fernández, M.M. González, RSC Adv. 5, 41653–41667 (2015)

    Article  Google Scholar 

  4. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, J. Appl. Phys. 86, 3780–3786 (1999)

    Article  CAS  Google Scholar 

  5. E. Alleno, E. Zehani, M. Gaborit, V. Orodniichuk, B. Lenoir, M. Benyahia, J. Alloy. Compd. 692, 676–686 (2017)

    Article  CAS  Google Scholar 

  6. T. Dahal, Q. Jie, G. Joshi, S. Chen, C.F. Guo, Y.C. Lan, Z.F. Ren, Acta. Mater. 75, 316–321 (2014)

    Article  CAS  Google Scholar 

  7. L. Deng, H.A. Ma, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, N. Dong, S.Z. Zheng, X. Jia, Mater. Lett. 63, 2139–2141 (2009)

    Article  CAS  Google Scholar 

  8. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, Adv. Funct. Mater. 14, 1189–1196 (2004)

    Article  CAS  Google Scholar 

  9. X.Y. Zhou, G.Y. Wang, L. Zhang, H. Chi, X.L. Su, J. Sakamoto, C. Uher, J. Mater. Chem. 22, 2958–2964 (2012)

    Article  CAS  Google Scholar 

  10. J.L. Mi, T.J. Zhu, X.B. Zhao, J. Ma, J. Appl. Phys. 101, 054314 (2007)

    Article  Google Scholar 

  11. H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, C. Uher, J. Phys. D 42, 145409 (2009)

    Article  Google Scholar 

  12. B. Feng, J. Xie, G.S. Cao, T.J. Zhu, X.B. Zhao, J. Mater. Chem. A 1, 13111 (2013)

    Article  CAS  Google Scholar 

  13. P.F. Wen, H.J. Yang, X.L. Zhou, B. Duan, P.C. Zhai, Mater. Lett. 223, 190–193 (2018)

    Article  CAS  Google Scholar 

  14. S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A.K. Srivastava, A. Dhar, Nanoscale 7, 12474–12483 (2015)

    Article  CAS  Google Scholar 

  15. A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, M.S. Toprak, J. Alloy. Compd. 612, 293–300 (2014)

    Article  CAS  Google Scholar 

  16. W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, J. Phys. D 40, 566–572 (2007)

    Article  CAS  Google Scholar 

  17. P.F. Wen, B. Duan, P.C. Zhai, P. Li, Q.J. Zhang, J. Mater. Sci-Mater. El. 24, 5155–5161 (2013)

    Article  CAS  Google Scholar 

  18. D.S. Stone, K.B. Yoder, W.D. Sproul, J. Vac. Sci. Technol. A 9, 2543–2547 (1991)

    Article  CAS  Google Scholar 

  19. G. Rogl, P. Rogl, Sci. Adv. Mater. 3, 517–538 (2011)

    Article  CAS  Google Scholar 

  20. A. Usenko, D. Moskovskikh, A. Korotitskiy, M. Gorshenkov, E. Zakharova, A. Fedorov, Y. Parkhomenko, V. Khovaylo, Scripta Mater. 146, 295–299 (2018)

    Article  CAS  Google Scholar 

  21. P. Scherrer, Math. Phys. Klasse. 2, 98–100 (1918)

    Google Scholar 

  22. Z. Qin, K.F. Cai, S. Chen, Y. Du, J. Mater. Sci-Mater. El. 24, 4142–4147 (2013)

    Article  CAS  Google Scholar 

  23. J. Pei, B.P. Zhang, J.F. Li, D.D. Liang, J. Alloy. Compd. 728, 694–700 (2017)

    Article  CAS  Google Scholar 

  24. S.S. Lim, J.H. Kim, B. Kwon, S.K. Kim, H.H. Park, K.S. Lee, J.M. Baik, W.J. Choi, D.I. Kim, D.B. Hyun, J.S. Kim, S.H. Baek, J. Alloy. Compd. 678, 396–402 (2016)

    Article  CAS  Google Scholar 

  25. C.C. Zhang, X.A. Fan, J. Hu, C.P. Jiang, B. Feng, Q.S. Xiang, G.Q. Li, Y.W. Li, Adv. Eng. Mater. 18, 1777–1784 (2016)

    Article  CAS  Google Scholar 

  26. R. Landauer, J. Appl. Phys. 23, 779–784 (1952)

    Article  CAS  Google Scholar 

  27. A.U. Khan, K. Kobayashi, D.M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y.M. Xue, B.Z. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano Energy 31, 152–159 (2017)

    Article  CAS  Google Scholar 

  28. W.Y. Zhao, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, Y.Z. Pei, Nat. Nanotechnol. 12, 55–60 (2017)

    Article  CAS  Google Scholar 

  29. B.C. Sales, B.C. Chakoumakos, V. Keppens, J.R. Thompson, Phys. Rev. B 56, 15081–15089 (1997)

    Article  CAS  Google Scholar 

  30. C.W. Nan, R. Birringer, Phys. Rev. B 57, 8264–8268 (1998)

    Article  CAS  Google Scholar 

  31. M. Takashiri, S. Tanaka, H. Hagino, K. Miyazaki, J. Appl. Phys. 112, 084315 (2012)

    Article  Google Scholar 

  32. P.F. Wen, P. Li, Q.J. Zhang, F.J. Yi, L.S. Liu, P.C. Zhai, J. Electron. Mater. 38, 1200–1205 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (11402182, 11502182), the Fundamental Research Funds for the Central Universities (WUT: 2017IA003. 2018IB002), and the open foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics (WUT: TAM201802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wen, P., Zhu, Y. et al. Effects of sintering temperature on the microstructure and thermoelectric properties of mesostructured Co4Sb11.5Te0.5 skutterudites dispersed nano-TiN. J Mater Sci: Mater Electron 29, 18105–18110 (2018). https://doi.org/10.1007/s10854-018-9921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9921-3

Navigation