Skip to main content
Log in

Rapid preparation of bulk Al x Yb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT = 1.36

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a skutterudite-based compound, Yb0.25Co4Sb12, added with Al x (x = 0, 0.1, 0.2, 0.3) was synthesized with a simple mechanical alloying technique followed by spark plasma sintering. The microstructural properties and thermoelectric properties of the as-sintered samples were investigated. The Al atoms formed AlSb nano-inclusions in the grain boundaries instead of entering the Sb-icosahedral voids, introducing point defects in the matrix lattice. By scattering low-energy electrons, the grain boundaries acted as a potential barrier in simultaneously attaining low electrical resistivity and high Seebeck coefficient. Therefore, Al0.1Yb0.25Co4Sb12 exhibited a high power factor of 4.8 × 10−3 W/m K2 at 377 °C. AlSb of nanometer length enhanced interfacial phonon scattering, thereby significantly reducing the lattice thermal conductivity of Al0.3Yb0.25Co4Sb12 to 0.6 W/m K at 500 K. The Al0.3Yb0.25Co4Sb12 composite exhibited the highest figure of merit, ZT = 1.36, at 850 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chen W-H, Liao C-Y, Hung C-I, Huang W-L (2012) Experimental study on thermoelectric modules for power generation at various operating conditions. Energy 45:874–881

    Article  Google Scholar 

  2. Gou XL, Yang SW, Xiao H, Ou Q (2013) A dynamic model for thermoelectric generator applied in waste heat recovery. Energy 52:201–209

    Article  Google Scholar 

  3. Jang J-Y, Tsai Y-C (2013) Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system. Appl Therm Eng 51:677–689

    Article  Google Scholar 

  4. Lesage FJ, Pagé-Potvin N (2013) Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy Convers Manag 66:98–105

    Article  Google Scholar 

  5. Lu H, Wu T, Bai S, Xu K, Huang Y, Gao W, Yin X, Chen L (2013) Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator. Energy 54:372–377

    Article  Google Scholar 

  6. Shen LM, Xiao F, Chen HX, Wang SW (2013) Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build 59:123–132

    Article  Google Scholar 

  7. Luo TT, Wang SY, Li H, Tang XF (2013) Low temperature thermoelectric properties of melt spun Bi85Sb15 alloys. Intermetallics 32:96–102

    Article  Google Scholar 

  8. Cherkez R (2012) Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter. Appl Therm Eng 38:7–13

    Article  Google Scholar 

  9. Chen LG, Meng FK, Sun FR (2012) Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics 52:58–65

    Article  Google Scholar 

  10. Meng F, Chen L, Sun F (2011) Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A 120:397–406

    Article  Google Scholar 

  11. Zhu YG, Shen HL, Guan H (2012) Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. J Mater Sci Mater Electron 23:2210–2215

    Article  Google Scholar 

  12. Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Bashir MBA, Mohamad M (2014) A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev 30:337–355

    Article  Google Scholar 

  13. Bashir MBA, Said SM, Sabri MFM, Shnawah DA, Elsheikh MH (2014) Recent advances on Mg2Si1−xSnx materials for thermoelectric generation. Renew Sustain Energy Rev 37:569–584

    Article  Google Scholar 

  14. Wan S, Huang X, Qiu P, Bai S, Chen L (2015) The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites. Mater Design 67:379–384

    Article  Google Scholar 

  15. Glen AS (1995) New materials and performance limits for thermoelectric cooling. CRC handbook of thermoelectrics. CRC Press, Florida

  16. Dyck JS, Chen W, Uher C, Chen L, Tang X, Hirai T (2002) Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J Appl Phys 91:3698–3705

    Article  Google Scholar 

  17. Song XL, Yang JY, Peng JY, Chen YH, Zhu W, Zhang TJ (2005) Thermoelectric properties of La filled skutterudite prepared by mechanical alloying and hot pressing. J Alloy Compd 399:276–279

    Article  Google Scholar 

  18. Mallik RC, Jung JY, Das VD, Ur SC, Kim IH (2007) Thermoelectric properties of SnzCo8Sb24 skutterudites. Solid State Commun 141:233–237

    Article  Google Scholar 

  19. Pei YZ, Bai SQ, Zhao XY, Zhang W, Chen LD (2008) Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci 10:1422–1428

    Article  Google Scholar 

  20. Li H, Tang X, Zhang Q (2009) Microstructure and thermoelectric properties of Yb-filled skutterudites prepared by rapid solidification. J Electron Mater 38:1224–1228

    Article  Google Scholar 

  21. Jiang YP, Jia XP, Su TC et al (2010) Thermoelectric properties of SmxCo4Sb12 prepared by high pressure and high temperature. J Alloy Compd 493:535–538

    Article  Google Scholar 

  22. Park K-H, Kim I-H (2010) Thermoelectric properties of Ca-filled CoSb3-based skutterudites synthesized by mechanical alloying. J Electron Mater 40:493–498

    Article  Google Scholar 

  23. Deng L, Jia XP, Su TC, Zheng SZ, Guo X, Jie K, Ma HA (2011) The thermoelectric properties of InxCo4Sb12 alloys prepared by HPHT. Mater Lett 65:2927–2929

    Article  Google Scholar 

  24. Mallik RC, Anbalagan R, Raut KK, Bali A, Royanian E, Bauer E, Rogl G, Rogl P (2013) Thermoelectric properties of Bi-added Co4Sb12 skutterudites. J Phys Condens Matter 25:105701

    Article  Google Scholar 

  25. Zhang Q, Chen C, Kang Y, Li X, Zhang L, Yu D, Tian Y, Xu B (2015) Structural and thermoelectric characterizations of samarium filled CoSb3 skutterudites. Mater Lett 143:41–43

    Article  Google Scholar 

  26. Park KH, Seo WS, Shin DK, Kim IH (2014) Thermoelectric properties of Yb-filled CoSb3 skutterudites. J Korean Phys Soc 65:491–495

    Article  Google Scholar 

  27. Zhao XY, Shi X, Chen LD, Zhang WQ, Bai SQ, Pei YZ, Li XY, Goto T (2006) Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl Phys Lett 89:092121

    Article  Google Scholar 

  28. Xiong Z, Chen XH, Huang XY, Bai SQ, Chen LD (2010) High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater 58:3995–4002

    Article  Google Scholar 

  29. Liu HQ, Zhou G, Sun Q, Gu YJ, Zhao XB (2011) Thermoelectric properties of xPbTe/Yb0.2Co4Sb12 hot-pressed samples. J Inorg Organomet Polym 21:858–861

    Article  Google Scholar 

  30. Petricek V, Dusek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  31. Ballikaya S, Wang G, Sun K, Uher C (2011) Thermoelectric properties of triple-filled BaxYbyInzCo4Sb12 skutterudites. J Electron Mater 40:570–576

    Article  Google Scholar 

  32. Shi X, Zhang W, Chen LD, Yang J (2005) Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Phys Rev Lett 95:185503

    Article  Google Scholar 

  33. Uher C (2000) Recent trends in thermoelectric materials research I. In: Tritt TM (ed) Semiconductors and semimetals. Academic Press, San Diego, pp 139–253

    Google Scholar 

  34. Graff J, Zhu S, Holgate T, Peng J, He J, Tritt TM (2011) High-temperature thermoelectric properties of Co4Sb12-based skutterudites with multiple filler atoms: Ce0.1InxYbyCo4Sb12. J Electron Mater 40:696–701

    Article  Google Scholar 

  35. Mallik RC, Stiewe C, Karpinski G, Hassdorf R, Muller E (2009) Thermoelectric properties of Co4Sb12 skutterudite materials with partial in filling and excess in additions. J Electron Mater 38:1337–1343

    Article  Google Scholar 

  36. Peng JY, He J, Alboni PN, Tritt TM (2009) Synthesis and thermoelectric properties of the double-filled skutterudite Yb0.2In(y)Co4Sb12. J Electron Mater 38:981–984

    Article  Google Scholar 

  37. Martin J, Wang L, Chen L, Nolas GS (2009) Enhanced seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79:115311–115315

    Article  Google Scholar 

  38. Ballikaya S, Uzar N, Yildirim S, Salvador JR, Uher C (2012) High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds. J Solid State Chem 193:31–35

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UMRG (Grant Nos. RP023B-13AET and RP023C/13AET), Science Fund (Grant No. SF020-2013) and FRGS (Grant No. FP022/2014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hamid Elsheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, M.H., Sabri, M.F.M., Said, S.M. et al. Rapid preparation of bulk Al x Yb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT = 1.36. J Mater Sci 52, 5324–5332 (2017). https://doi.org/10.1007/s10853-017-0772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0772-8

Keywords

Navigation