Skip to main content
Log in

Enhancement magnetoelectric effect in Metglas-Fe by annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An optimal annealing condition (360 °C, 10 min) was found for the FeBSiC Metglas, at which the Metglas transformed into a mix phase structure between amorphous and crystalline. It gives a deformation of single-layer FeBSiC Metglas ribbon increases from 26.9 ppm of the unannealed sample to 34.6 ppm, piezomagnetic coefficient d33,m from 1.9 to 2.6 ppm/Oe, and the loss decreases from 0.18 to 0.07%. After the mix phase Metglas and Mn-doped 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (Mn-doped PMN-PT) single crystal were fabricated into a magnetoelectric (ME) laminate composite, it is found that αQ at quasi-static and resonance frequency rises from 2183 to 2640 pC/Oe, and from 120,000 to 165,000 pC/Oe, with the increase amplitude of 21% and 37.5%, respectively. From test of realistic noise, the equivalent noise magnetic field (EMN) @1 Hz of the ME sensor made by mix phase Metglas declines from 20.2 to 15.4 pT/Hz1/2, and EMN@30 Hz from 1.46 to 1.23 pT/Hz1/2. The reinforcement of the piezomagnetic performance is attributed to the generation of mix phase structure. It can enhance ME coupling performance at quasi-static and resonance state, reduce loss, and boost the sensitivity of the ME sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  ADS  Google Scholar 

  2. A. Baschirotto, E. Dallago, P. Malcovati, A fluxgate magnetic sensor: from PCB to micro-integrated technology. IEEE Trans. Instrum. Meas. 56, 25–31 (2007). https://doi.org/10.1109/TIM.2006.887218

    Article  Google Scholar 

  3. S. Tanaka, T. Akai, Y. Hatsukade, T. Ohtani, Y. Ikeda, S. Suzuki, K. Tanabe, High Tc SQUID detection system for metallic contaminant in lithium ion battery. IEEE Trans. Magn. 45, 4510–4513 (2009). https://doi.org/10.1109/TMAG.2009.2021857

    Article  ADS  Google Scholar 

  4. T.R. Clem, Progress in magnetic sensor technology for sea mine detection. Proc. Spie. 3079, 354–371 (1997). https://doi.org/10.1117/12.280862

    Article  Google Scholar 

  5. G. Garvey, W. Gerace, R. Jaffe, I. Talmi, I. Kelson, Set of nuclear-mass relations and a resultant mass table. Rev. Mod. Phys. 49, S1–S80 (1969). https://doi.org/10.1103/RevModPhys.41.S1

    Article  ADS  Google Scholar 

  6. R. Newnham, D. Skinner, L. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978). https://doi.org/10.1016/0025-5408(78)90161-7

    Article  Google Scholar 

  7. Y. Jia, F. Wang, X. Zhao, H. Luo, S.W. Or, H. Lai, W. Chan, Converse magnetoelectric effects in piezoelectric-piezomagnetic layered composites. Compos. Sci. Technol. 68, 1440–1444 (2008). https://doi.org/10.1016/j.compscitech.2007.10.046

    Article  Google Scholar 

  8. J. Ma, J. Jiao, C. Fang, X. Zhao, H. Luo, High sensitive nonlinear modulation magnetoelectric magnetic sensors with a magnetostrictive metglas structure based on bell-shaped geometry. J. Magn. Magn. Mater. 405, 225–230 (2016). https://doi.org/10.1016/j.jmmm.2015.12.073

    Article  ADS  Google Scholar 

  9. C. Fang, J. Jiao, J. Ma, D. Lin, X. Zhao, Haosu Luo, Ultrahigh magnetoelectric voltage coefficients in laminates of Metglas and length-polarized ternary 0.35Pb(In1/2Nb1/2)O3–0.35Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystals. Sens. Actuators, A. 233, 202–206 (2015). https://doi.org/10.1016/j.sna.2015.07.006

    Article  Google Scholar 

  10. Z. Yin, H. Luo, P. Wang, G. Xu, Growth characterization and properties of relaxor ferroelectric PMN-PT single crystals. Ferroelectrics 229, 207–216 (1999). https://doi.org/10.1080/00150199908224341

    Article  Google Scholar 

  11. Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, Haosu Luo, Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111, 124513 (2012). https://doi.org/10.1063/1.4729832

    Article  ADS  Google Scholar 

  12. S. Dong, J. Zhai, J. Li, D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl. Phys. Lett. 89, 252904 (2006). https://doi.org/10.1063/1.2420772

    Article  ADS  Google Scholar 

  13. J. Zhai, S. Dong, Z. Xing, J. Li, D. Viehland, Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett. 89, 083507 (2006). https://doi.org/10.1063/1.2337996

    Article  ADS  Google Scholar 

  14. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, D. Viehland, An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 23, 4111–4114 (2011). https://doi.org/10.1002/adma.201100773

    Article  Google Scholar 

  15. C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H. Luo, Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites. J. Phys. D: Appl. Phys. 48, 465002 (2015). https://doi.org/10.1088/0022-3727/48/46/465002

    Article  ADS  Google Scholar 

  16. J. Ma, J. Jiao, C. Fang, H. Deng, S. Wang, D. Lin, H. Xu, X. Zhao, H. Luo, Improvement of magnetoelectric properties in metglas/ Pb(Mg1/3Nb2/3)O3-PbTiO3/metglas laminates with screen-printed ID-electrodes by poling optimization. J. Alloys Compd. 656, 793–797 (2016). https://doi.org/10.1016/j.jallcom.2015.10.050

    Article  Google Scholar 

  17. Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, S. Dong, Enhanced resonance magnetoelectric coupling in (1–1) connectivity composites. Adv. Mater. 29, 1606022 (2017). https://doi.org/10.1002/adma.201606022

    Article  Google Scholar 

  18. M. Pourhosseiniasl, X. Gao, S. Kamalisiahroudi, Z. Yu, Z. Chu, J. Yang, H. Lee, S. Dong, Versatile power and energy conversion of magnetoelectric composite materials with high efficiency via electromechanical resonance. Nano Energy 70, 104506 (2020). https://doi.org/10.1016/j.nanoen.2020.104506

    Article  Google Scholar 

  19. H. Vogel, M. Von Heimendahl, The effect of pre-annealing on the subsequent crystallization in the metallic glasses Fe-Ni-P-B and Fe-Ni-Cr-P-B using transmission electron microscopy. Mater. Sci. Eng. 57, 171–179 (1983)

    Article  Google Scholar 

  20. P.T. Squire, M.R.J. Gibbs, Effect in obliquely field annealed Metglas2605SC. IEEE Trans. Magn. 25, 3614–3616 (1989)

    Article  ADS  Google Scholar 

  21. Y. Yang, J. Gao, Z. Wang, M. Li, J. Li, J. Das, D. Viehland, Effect of heat treatment on the properties of Metglas foils, and laminated magnetoelectric composites made thereof. Mater. Res. Bull. 46, 266–270 (2011)

    Article  Google Scholar 

  22. E. Freeman, J. Harpe, N. Goel, I. Gilbert, J. Unguris, S.J. Schiff, S. Tadigadapa, Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field. Smart Mater. Struct. 26, 085038 (2017)

    Article  ADS  Google Scholar 

  23. H. Fujimori, H. Yoshimoto, T. Masumoto, T. Mitera, Anomalous eddy current loss and amorphous magnetic materials with low core loss. J. Appl. Phys. 52, 1893 (1981). https://doi.org/10.1063/1.329563

    Article  ADS  Google Scholar 

  24. H. Fiedler, J. Leveneur, D.R.G. Mitchell, S. Arulkumaran, G.I. Ng, A. Alphones, J. Kennedy, Enhancing the piezoelectric modulus of wurtzite AlN by ion beam strain engineering. Appl. Phys. Lett. 118, 012108 (2021). https://doi.org/10.1063/5.0031047

    Article  ADS  Google Scholar 

  25. H. Fiedler, F. Fuchs, J. Leveneur, M. Nancarrow, D.R.G. Mitchell, J. Schuster, J. Kennedy, Giant piezoelectricity of deformed aluminum nitride stabilized through noble gas interstitials for energy efficient resonators. Adv. Electron. Mater. 7, 2100358 (2021)

    Article  Google Scholar 

  26. S. Katakam, J.Y. Hwang, H. Vora, S.P. Harimkar, R. Banerjeeb, N.B. Dahotrea, Laser-induced thermal and spatial nanocrystallization of amorphous Fe-Si-B alloy. Scr. Mater. 66, 538–541 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.028

    Article  Google Scholar 

  27. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  MATH  ADS  Google Scholar 

  28. Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512 (2016)

    Article  Google Scholar 

  29. C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall-Petch effect in nanocrystalline materials. Acta Mater. 55, 3749–3756 (2007)

    Article  ADS  Google Scholar 

  30. A.A. Nazarov, On the pile-up model of the grain size-yield stress relation for nanocrystals. Scr. Mater. 34, 697–701 (1996)

    Article  Google Scholar 

  31. S. Katakam, S. Santhanakrishnan, H. Vora, J.Y. Hwang, R. Banerjee, N.B. Dahotre, Stress-induced selective nanocrystallization in laser-processed amorphous Fe-Si-B alloys. Philos. Mag. Lett. 92, 617–624 (2012). https://doi.org/10.1080/09500839.2012.704416

    Article  ADS  Google Scholar 

  32. H. Fujimori, H. Yoshimoto, T. Masumoto, T. Mitera, Anomalous eddy current loss and amorphous magnetic materials with low core loss. J. Appl. Phys. 52(3), 1893–1898 (1981). https://doi.org/10.1063/1.329563

    Article  ADS  Google Scholar 

  33. Yoshihisa OBI, (1976) Hiroyasu FuIMoRI, Hideo SAIToMagnetic, Domain Structure of an Amorphous Fe-P-C Alloy, Jpn. J. Appl. Phys. 15 15611. http://iopscience.iop.org/1347-4065/15/4/611

  34. A. Datta, D. Nathasingh, R.J. Martis, P.J. Flanders, C.D. Graham, Saturation and engineering magnetostriction of an iron-base amorphous alloy for power applications. J. Appl. Phys. 55, 1784–1786 (1984). https://doi.org/10.1063/1.333477

    Article  ADS  Google Scholar 

  35. T. Deng, B. Fang, R. Zhu, J. Chen, H. Luo, Dynamic scaling hysteresis behavior and field-induced domain transition of 0.16PIN-0.62PMN-0.22 PT single crystals. Curr. Appl. Phys. 21, 64–71 (2021). https://doi.org/10.1016/j.cap.2020.10.011

    Article  ADS  Google Scholar 

  36. J. Ma, C. Xin, J. Ma, Q. Zhang, C. Nan, Self-biased magnetoelectric effect in (Pb, Zr)TiO3/metglaslaminates by annealing method. Sci. Bull. 61, 378–382 (2016). https://doi.org/10.1007/s11434-016-1002-5

    Article  Google Scholar 

  37. S. Dong, J. Zhai, Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chin. Sci. Bull. 53, 2113–2123 (2008). https://doi.org/10.1007/s11434-008-0304-7

    Article  Google Scholar 

  38. S. Dong, J. Li, D. Viehland, Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51, 794–799 (2004). https://doi.org/10.1109/TUFFC.2003.1244741

    Article  Google Scholar 

  39. J. Jiao, L. Li, B. Ren, H. Guo, H. Deng, W. Di, X. Zhao, W. Jing, Haosu Luo, Parallel multilayer magnetoelectric composite based on (1–x)Pb(Mg1/3Nb2/3)-xPbTiO3 and Terfenol-D coupled with charge mode amplifier. J. Appl. Phys. 111, 043909 (2012). https://doi.org/10.1063/1.3681818

    Article  ADS  Google Scholar 

  40. M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B: Condens. Matter. 68(23), 054402 (2003). https://doi.org/10.1103/PhysRevB.68.054402

    Article  ADS  Google Scholar 

  41. J. Jiao, W. Wang, L. Li, Y. Liu, B. Ren, H. Deng, J. Chen, C. Xu, W. Di, X. Zhao, H. Luo, W. Jing, An improved magnetic field detection unit based on length-magnetized Terfenol-D and width-polarized ternary 035Pb(In1/2Nb1/2)O3–035Pb(Mg1/3Nb2/3)O3–030PbTiO3. Appl. Phys. Lett. 101, 232906 (2012). https://doi.org/10.1063/1.4769904

    Article  ADS  Google Scholar 

  42. Y. Wang, J. Li, D. Viehland, A differential magnetoelectric heterostructure: internal noise reduction and external noise cancellation. J. Appl. Phys. 118, 214103 (2015). https://doi.org/10.1063/1.4936263

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 61634007 and 11827808), the National Key Research and Development Program of China (Nos. 2016YFC0301803 and 2016YFC0201102), the International Partnership Program of CAS (121631KYSB20190026), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support. Tingyu Deng thanks the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_1175) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijun Fang or Haosu Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Chen, Z., Di, W. et al. Enhancement magnetoelectric effect in Metglas-Fe by annealing. Appl. Phys. A 127, 899 (2021). https://doi.org/10.1007/s00339-021-05045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05045-z

Keywords

Navigation