Skip to main content
Log in

Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites

  • Articles
  • Condensed State Physics
  • Published:
Chinese Science Bulletin

Abstract

Magnetoelectric equivalent circuit analytical method is presented for laminate composites of magneto-strictive Terfenol-D (Tb x Dy1−x Fe2) and piezoelectric Pb(Zr1−x Ti x )O3 (PZT) operated in longitudinal magnetized and transverse polarized (or L-T), and transverse magnetized and transverse polarized (or T-T) modes. Magnetoelectric (ME) couplings both at low-frequency and resonance-frequency have been studied, and our analysis predicts that (i) the ME voltage coefficients of both L-T and T-T modes increase with increasing the thickness of the piezoelectric phase whereas magnetostrictive phase thickness keeps constant, and then tend to saturation when the thickness ratio of piezoelectric phase to magnetic phases is >3; (ii) there are the optimum thickness ratios that maximize magnetoelectric (ME) voltage coefficients for the two modes, which are dependent on elastic compliances ratio of piezoelectric phase and magnetostrictive phase; and (iii) the ME voltage coefficients are dramatically increased by a factor of ∼Q m, when operated at resonance frequency. A series of Terfenol-D/PZT laminates were fabricated, and the results were compared with the theoretical ones. Experiments confirmed that equivalent circuit method is a useful tool for optimum designs of ME laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau L D, Lifshitz E. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1960. 119

    Google Scholar 

  2. Dong S X, Li J F, Viehland D. Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Appl Phys Lett, 2003, 83: 2265–2267

    Article  CAS  Google Scholar 

  3. Dong S X, Li J F, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl Phys Lett, 2004, 85: 2307

    Article  CAS  Google Scholar 

  4. Dong S X, Zhai J Y, Bai F M, et al. Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl Phys Lett, 2005, 87: 062502

    Article  Google Scholar 

  5. Li Y Q. An innovative passive solid-state magnetic sensor. Sensors, 2000, 10: 17

    Google Scholar 

  6. Dong S X, Zhai J Y, Li J F, et al. Magnetoelectric gyration effect in Tb1−x DyxFe2−y /Pb(Zr,Ti)O3 laminated composites at the electromechanical resonance. Appl Phys Lett, 2006, 89: 243512

    Article  Google Scholar 

  7. Zhai J Y, Li J F, Dong S X, et al. Enhanced magnetoelectric effect in three-phase MnZnFe2O4/Tb1−x DyxFe2−y /Pb(Zr,Ti)O3 composites. J Appl Phys, 2006, 100: 124108

    Article  Google Scholar 

  8. Dong S X, Li J F, Viehland D. Voltage gain effect in a ring-type magnetoelectric laminate. Appl Phys Lett, 2004, 84: 4188

    Article  CAS  Google Scholar 

  9. Dong S X, Li J F, Viehland D. A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl Phys Lett, 2004, 85: 3534

    Article  CAS  Google Scholar 

  10. Tatarenko A S, Srinivasan G, Bichurin M I. Magnetoelectric microwave phase shifter. Appl Phys Lett, 2006, 88: 183507

    Article  Google Scholar 

  11. Festisov Y, Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett, 2006, 88: 143503

    Article  Google Scholar 

  12. Matteo S Di, Jansen A G M. Magnetoelectricity in V2O3. Phys Rev B, 2002, 66: 100402

    Article  Google Scholar 

  13. Dzyaloshinskii I E. On the magnetoelectric effect in antiferromagnets. Sov Phys J Exp Theor Phys, 1960, 37: 628

    Google Scholar 

  14. Ryu J, Carazo A V, Uchino K, et al. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J Electroceramics, 2001, 7: 24

    Article  Google Scholar 

  15. Nan C W, Liu L, Cai N, et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl Phys Lett, 2002, 81: 3831

    Article  CAS  Google Scholar 

  16. Suchetelene V. Product properties: A new application of composite materials. Philips Res Rep, 1972, 27: 28

    Google Scholar 

  17. Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn J Appl Phys, 2001, 40: 4948

    Article  CAS  Google Scholar 

  18. Srinivasan G, Rasmussen E, Levin B, et al. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B, 2002, 65: 134402

    Article  Google Scholar 

  19. Srinivasan G, Rasmussen E, Gallegos J, et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B, 2001, 64: 214408

    Article  Google Scholar 

  20. Srinivasan G, Laletin V M, Hayes R, et al. Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate. Solid State Comm, 2002, 124: 373–378

    Article  CAS  Google Scholar 

  21. Bichurin M I, Petrov V M, Srinivasan G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J Appl Phys, 2002, 92: 7681

    Article  CAS  Google Scholar 

  22. Mori K, Wuttig M. Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites. Appl Phys Lett, 2002, 81: 100

    Article  CAS  Google Scholar 

  23. Dong S X, Li J F, Viehland D. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Theory. IEEE Trans Ultrason Ferr Freq Contr, 2003, 50: 1253

    Article  Google Scholar 

  24. Dong S X, Li J F, Viehland D. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Experiments. IEEE Trans Ultrason Ferr Freq Contr, 2004, 51: 794

    Google Scholar 

  25. Dong S X, Li J F, Viehland D. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl Phys Lett, 2003, 83: 4812

    Article  CAS  Google Scholar 

  26. Dong S X, Li J F, Viehland D. A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composite. Appl Phys Lett, 2004, 85: 5305

    Article  CAS  Google Scholar 

  27. Dong S X, Li J F, Viehland D. Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes. J Appl Phys, 2004, 95: 2625

    Article  CAS  Google Scholar 

  28. Dong S X, Li J F, Viehland D. Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings. J Appl Phys, 2004, 96: 3382

    Article  CAS  Google Scholar 

  29. Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B, 1994, 50: 6082

    Article  CAS  Google Scholar 

  30. Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys Rev B, 2001, 63: 144415

    Article  Google Scholar 

  31. Avellaneda M, Harshe G. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites. J Intel Mater Syst Struct, 1994, 5: 501–513

    Article  CAS  Google Scholar 

  32. Wu T, Huang J. Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Intern J Solids Struct, 2000, 37: 3009

    Google Scholar 

  33. Dong S X, Zhai J Y, Li J F, et al. Near-perfect magnetoelectricity in high-permeability magnetostrictive/piezoelectric-fiber laminates. Appl Phys Lett, 2006, 89: 252904

    Article  Google Scholar 

  34. Dong S X, Viehland D, Xing Z P, et al. Giant magnetoelectric effect (under a dc magnetic bias of 2 Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3,Nb2/3)O3-7%PbTiO3 fibers. Appl Phys Lett, 2007, 91: 022915

    Google Scholar 

  35. Mason W. Physical Acoustics, Principle and Methods. New York: Academic Press, 1964. 263

    Google Scholar 

  36. Cady W G. Piezoelectricity: An introduction to theory and applications of electromechanical phenomena in crystal. New York: Dover Publications, 1964

    Google Scholar 

  37. Katz H W. Solid State Magnetic and Dielectric Devices. New York: John Wiley & Sons Inc, 1959. 119

    Google Scholar 

  38. Amin A, Newnham R E, Cross L E. Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)O3 piezoelectrics. Phys Rev B, 1986, 34: 1595

    Article  CAS  Google Scholar 

  39. Yang F, Wen Y M, Li P, et al. The resonant magnetoelectric response of magnetostrictive/piezoelectric laminated composite under the consideration of losses. Acta Phys Sin, 2007, 56: 3539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuXiang Dong.

Additional information

Supported by the Office of Naval Research in USA

Electronic supplementary material

About this article

Cite this article

Dong, S., Zhai, J. Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chin. Sci. Bull. 53, 2113–2123 (2008). https://doi.org/10.1007/s11434-008-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0304-7

Keywords

Navigation