Skip to main content
Log in

Self-biased magnetoelectric effect in (Pb, Zr)TiO3/metglas laminates by annealing method

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

FeBSiC metglas was annealed at an optimized condition (350 °C, 5 min) to achieve the mixed phases with pristine amorphous phase and crystallization phase. With such annealed metglas, a self-biased magnetoelectric (ME) laminate of metglas/Pb(Zr, Ti)O3/metglas was fabricated. Without any external magnetic field, the composite exhibits the ME coefficient α E31 of 103 mV/(cm Oe) at 1 kHz and 15.5 V/(cm Oe) at electromechanical resonance frequency. The induced ME voltage shows a good linear relation to the applied AC magnetic field with amplitude as low as 10−7 T at 1 kHz. It is expected that such self-biased ME composites provide a practical application of economical and compact magnetic sensors.

摘要

由磁致伸缩材料/压电材料复合而成的磁电复合材料对磁场具有较高的灵敏度,且具有易于小型化及可在室温工作的特点,因此受到广泛关注。已有研究表明磁电复合材料的磁电耦合系数(α E)与磁致伸缩材料的压磁系数(d m)成正比,而磁致伸缩材料一般需要在相应的外加直流偏置磁场(H dc)下才能达到最优的压磁系数,当外磁场为零时,压磁系数也几乎为零。因此磁电材料需要在一定外加磁场下工作,这给器件集成和小型化带来了困难。若能取消外磁场,制备出具有自偏置场的磁致伸缩材料,对磁电复合材料的实际应用具有重大意义。非晶态合金(metglas)可在较小偏置场下达到压磁系数的最优值。相关研究表明,对metglas进行磁场退火处理可在其内部形成结晶相,并出现剩余磁化强度。本文选取FeBSiC非晶态合金为研究对象,通过优化磁场退火条件,使退火处理后的FeBSiC合金同时具备自偏置特性和磁致伸缩能力,并利用该合金与锆钛酸铅陶瓷组成叠层结构磁电复合材料。磁电测试结果显示,在外界偏置磁场H dc为零的情况下,该磁电复合材料磁电耦合系数在1 kHz下达到103 mV/(cm Oe),而机电谐振频率下可达15.5 V/(cm Oe),具有明显的自偏置特性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nan CW, Bichurin MI, Dong SX et al (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  2. Ma J, Hu JM, Li Z et al (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087

    Article  Google Scholar 

  3. Fang YW, Ding HC, Tong WY et al (2015) First-principles studies of multiferroic and magnetoelectric materials. Sci Bull 60:156–181

    Article  Google Scholar 

  4. Wang YJ, Li JF, Viehland D (2014) Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater Today 17:269–275

    Article  Google Scholar 

  5. Lu MC, Mei L, Jeong DY et al (2015) Enhancing the magnetoelectric response of terfenol-D/polyvinylidene fluoride/terfenol-D laminates by exploiting the shear mode effect. Appl Phys Lett 106:112905

    Article  Google Scholar 

  6. Ryu JH, Priya S, Carazo AV et al (2001) Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites. J Am Ceram Soc 84:2905–2908

    Article  Google Scholar 

  7. Dong SX, Li JF, Viehland D (2003) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans Ultrason Ferroelectr Freq Control 50:1253–1261

    Article  Google Scholar 

  8. Dong SX, Zhai JY (2008) Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chin Sci Bull 53:2113–2123

    Article  Google Scholar 

  9. Lage E, Kirchhof C, Hrkac V et al (2012) Exchange biasing of magnetoelectric composites. Nat Mater 11:523–529

    Article  Google Scholar 

  10. Chen L, Li P, Wen YM et al (2012) Highly zero-biased magnetoelectric response in magnetostrictive/piezoelectric composite. J Appl Phys 112:024504

    Article  Google Scholar 

  11. Li MH, Wang ZG, Wang YJ et al (2013) Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl Phys Lett 102:082404

    Article  Google Scholar 

  12. Wang YJ, Gray D, Berry D et al (2011) An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater 23:4111–4114

    Article  Google Scholar 

  13. Rivas M, Garcia JA, Tejedor M et al (2005) Influence of the dipolar interactions in the magnetization reversal asymmetry of hard-soft magnetic ribbons. J Appl Phys 97:023903

    Article  Google Scholar 

  14. Fujimori H, Yoshimoto H, Masumoto T et al (1981) Anomalous eddy-current loss and amorphous magnetic-materials with low core loss. J Appl Phys 52:1893–1898

    Article  Google Scholar 

  15. Yang YD, Gao JQ, Wang ZG et al (2011) Effect of heat treatment on the properties of metglas foils, and laminated magnetoelectric composites made thereof. Mater Res Bull 46:266–270

    Article  Google Scholar 

  16. Rivas M, Garcia JA, Riba J et al (2007) Surface crystallization and magnetic properties in Co66Fe4Mo2Si16B12. J Magn Magn Mater 316:E538–E540

    Article  Google Scholar 

  17. Ma J, Li Z, Lin YH et al (2011) A novel frequency multiplier based on magneto electric laminate. J Magn Magn Mater 323:101–103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51402164 and 51572142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xin, C., Ma, J. et al. Self-biased magnetoelectric effect in (Pb, Zr)TiO3/metglas laminates by annealing method. Sci. Bull. 61, 378–382 (2016). https://doi.org/10.1007/s11434-016-1002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1002-5

Keywords

Navigation