Skip to main content
Log in

Impact of doping Gd3+rare earth ion on structural, magnetic, and optical properties of cobalt and nickel ferrite nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact of Gd rare earth ion on structural, magnetic, and optical properties of Ni and Co spinel ferrite nanomaterial prepared by low-cost sol–gel method has been studied in this research. The XRD measurement confirms the pure phase formation having crystallite size between 15.61–23.49 and 12.01–30.95 nm for Gd3+substituted CoFe2O4 and NiFe2O4, respectively. A slight decrement in crystallite size was found due to large size ion of rare earth elements. The lattice constants of CoFe2O4 materials displayed a decrease from 8.4477 to 8.3635 Å and an increase from 8.3565 to 8.3968 Å in NiFe2O4 materials, prepared at the same temperature. The molecular bonds between 469 and 3453 cm−1 were examined by FTIR spectroscopy. The direct bandgap (Eg) of CoFe2O4 and NiFe2O4 was between 1.63–2.41 and 1.61–1.66 eV, respectively, by UV–Visible spectroscopy. The room temperature PL studies (200 nm excitation) revealed a dominant blue emission and a weak green emission. The particle size of CoFe2O4 and NiFe2O4 was found 34 and 41.58 nm, respectively, by HRTEM which is close to the result obtained by XRD analysis. The coercivity (Hc) of pure CoFe2O4 and NiFe2O4displayed the magnitude of 1452.41 and 191.49 Oe, respectively. The saturation magnetization (Ms) was found between 30.59–57.84 and 23.99–42.11 emu/g for CoFe2O4 and NiFe2O4. The tuned optical and magnetic behavior could make them applicable in magneto-optical devices, water purification and other related uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, T. Tahmasebi, Superspin glass state in MnFe2O4 nanoparticles. J. Magn. Magn. Mater. 322, 2929–2934 (2010)

    Article  ADS  Google Scholar 

  2. A.P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271, 933–937 (1996)

    Article  ADS  Google Scholar 

  3. M. Sugimoto, The Past, Present, and Future of Ferrites. J. Am. Ceram. Soc 82, 269–280 (1999)

    Article  Google Scholar 

  4. H.M. Fan, J.B. Yi, Y. Yang, K-Wei Kho, H-Ru Tan, Z-Xiang Shen, J Ding, X-Wei Sun, M Carolene Olivo, Y-Ping Feng, Single-Crystalline MFe2O4 Nanotubes/Nanorings Synthesized by Thermal Transformation Process for Biological Applications. ACS Nano 3, 2798–2808 (2009)

    Article  Google Scholar 

  5. M.H. Khedr, A.A. Omar, S.A. Abdel-Moaty, Magnetic nanocomposites: preparation and characterization of Co-ferrite nanoparticles. Colloids Surf. A 281, 8–14 (2006)

    Article  Google Scholar 

  6. J.B. Silva, W. De Brito, N.D.S. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders. J. Mater. Sci. Eng B 112, 182–187 (2004)

    Article  Google Scholar 

  7. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321, 1251–1255 (2009)

    Article  ADS  Google Scholar 

  8. D. Zhao, X. Wu, H. Guan, E. Han, Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles. J. Supercrit. Fluids, 42, 226–233 (2007).

  9. L. Chen, Y. Shen, J. Bai. Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters, Mater. Lett, 63, 1099–1101 (2009).

  10. M. Gharagozlou, Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method, J. Alloys Compd. 486, 660–665 (2009).

  11. I. H. Gul, A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, J. Alloys Compd. 465, 227–231 (2008).

  12. G. Baldi, D. Bonacchi, C. Innocenti, G Lorenzi, C Sangregorio, Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties. J. Magn. Magn. Mater. 311,10–16 (2007).

  13. K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe2O4 Particles. Chem. Mater. 10, 3445–3450 (1998)

    Article  Google Scholar 

  14. X. Chu, D. Jiang, C. Zheng, The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods. Sens. Actuators, B 123, 793–797 (2007).

  15. S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra., Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2–NiFe2O4 system. J. Mat. Sci. Eng. B 119,144–151 (2005).

  16. Y.L. Raikher, V.I. Stepanov, J. Depeyrot, M.H. Sousa, F.A. Tourinho, E. Hasmonay, R. Perzynski, Dynamic optical probing of the magnetic anisotropy ofnickel-ferrite nanoparticles. JAppl. Phys. 96, 5226–5233 (2004)

    Article  ADS  Google Scholar 

  17. C.H. Cunningham, T. Arai, P.C. Yang, Michael V. McConnell, John M. Pauly, Steven M. Conolly, Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles, 53, 999–1005 (2005).

  18. T.J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.-H. Cho., J.-K. Lee, Multifunctional Nanoparticles Possessing A “Magnetic Motor Effect” for Drug or Gene Delivery.Angew. Chemie (International ed) 44,1068–1071 (2005).

  19. H. Li, H. Z. Wu, G.X. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol. 198, 157–166 (2010).

  20. P. Sivakumar, R. Ramesh, A. Ramanand et al., Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65, 1438–1440 (2011)

    Article  Google Scholar 

  21. L. Chen, H. Dai, Y. Shen, J. Bai, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloys Compounds 91, L33–L38 (2010)

    Article  Google Scholar 

  22. N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, A facile thermolysis route to monodisperse ferrite nanocrystals, J Am. Chem. Soc. 129, 12374–12375 (2007).

  23. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.S. Lohar et al., Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites. Mater. Lett. 64, 722–724 (2010)

    Article  Google Scholar 

  24. R. Mohan, M. P. Ghosh, S. Mukherjee, Size dependent exchange bias in single-phase Zn0. 3Ni0. 7Fe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 458,193–199 (2018).

  25. P. Kumar, J. Chand, Satish Verma, M. Singh, Micro-structural studies of gadolinium doped cobalt ferrites. Int. J. Theor Appl. Sci. 3, 10–12 (2011).

  26. J. Peng, M. Hojamberdiev, X. Yunhua, B. Cao, J. Wang, W. Hongn, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–137 (2011)

    Article  ADS  Google Scholar 

  27. L.B. Tahar L.S. Smiri, M. Artus, et al., Characterization and magnetic properties of Sm-and Gd-substituted CoFe2O4 nanoparticles prepared by forced hydrolysis in polyol, Mater. Res. Bull. 42, 1888–1896 (2007).

  28. V.S. Puli, S. Adireddy, C.V. Ramana, Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J Alloy. Compd. 644, 470–475 (2015)

    Article  Google Scholar 

  29. R.N. Panda, J.C. Shih, T.S. Chin, Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 257, 79–86 (2003)

    Article  ADS  Google Scholar 

  30. M.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014)

    Article  Google Scholar 

  31. K. K. Bharathi, J. A. Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677−3680 (2009).

  32. H.Yao, X. Ning, H. Zhao, A. Hao, M. Ismail, Effect of Gd-doping on structural, optical, and magnetic properties of NiFe2O4 As-prepared Thin Films via Facile Sol−Gel approach. ACS Omega 6, 6305−6311 (2021).

  33. M. Yehia, S.M. Ismail, A. Hashhash, Structural and Magnetic Studies of Rare-Earth Substituted Nickel Ferrites. J Supercond. Nov. Magn. 27, 771–774 (2014).

  34. T.P. Poudel, B.K. Rai, S. Yoon, D. Guragain, D. Neupane, S.R. Mishra. J. Alloys Compounds 802, 609–619 (2019)

    Article  Google Scholar 

  35. A.B. Kadam, Vishwanath K. Mande, S.B. Kadam, R.H. Kadam, Sagar E. Shirsath, Rameshwar B. Borade, Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J. Alloys Compounds 840, 155669 (2020).

  36. Abdur Rahman, Sonia Zulfiqar, AinUlHaq, Ibrahim A. Alsafari, UmairYaqubQazi, Muhammad Farooq Warsi, Muhammad Shahid, Cd-Gd-doped nickel spinel ferrite nanoparticles and their nanocomposites with reduced graphene oxide for catalysis and antibacterial activity studies. Ceramics Int. https://doi.org/10.1016/j.ceramint.2020.12.085.

  37. H. Yao, XueerNing, Hong Zhao, AizeHao, and Muhammad Ismail, Effect of Gd-Doping on Structural, Optical, and Magnetic Properties of NiFe2O4 As-prepared Thin Films via Facile Sol−Gel Approach. ACS Omega 6, 6305–6311 (2021)

  38. F. Javed, Muhammad Asad Abbas, Muhammad Imran Asad, Naveed Ahmed, Nauman Naseer, Gd3+ Doped CoFe2O4 nanoparticles for targeted drug delivery and magnetic resonance imaging. Magnetochemistry 7, 47 (2021)

  39. Raghvendra Singh Yadava, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, David Skodaa, Milan Masař, Martin Holek, Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrasonics Sonochem. 40, 773–783 (2018).

  40. Asima Anwar, Muhammad Asif Yousuf, Sonia Zulfiqar, Philips O. Agboola, Imran Shakir, Najeeb Faud Al-Khalli e Muhammad Farooq Warsi The impact of highly paramagnetic Gd3+ cations on structural, spectral, magnetic and dielectric properties of spinel nickel ferrite nanoparticles. J. Saudi Chem. Soc. 25, 101306 (2021).

  41. M. Mozaffari, J. Amighian, E. Darsheshdar, Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J Magn. Magn. Mater. 350, 19–22 (2014)

    Article  ADS  Google Scholar 

  42. T. Prabhakaran, J. Hemalatha, Combustion synthesis and characterization of cobalt ferrite nanoparticles. Ceram. Int. 42, 14113–14120 (2016)

    Article  Google Scholar 

  43. D. Karthickraja, S. Karthi, G.A. Kumar, D.K. Sardar, G.C. Dannangoda, K.S. Martirosyan, E.K. Girija, Fabrication of core–shell CoFe2O4@HAp nanoparticles: a novel magnetic platform for biomedical applications. New J. Chem. 43, 13584–13593 (2019)

    Article  Google Scholar 

  44. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015)

    Article  Google Scholar 

  45. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  ADS  Google Scholar 

  46. K.K. Bharathi, G. Markandeyulu, C.V. Ramana. J. Phys. Chem. 115, 554–560 (2011)

    Google Scholar 

  47. C.H. Zang, D.M. Zhang, C.J. Tang, S.J. Fang, Z.J. Zong, Y.X. Yang, C.H. Zhao, Y.S. Zhang, Optical Properties of a ZnO/P nanostructure fabricated by a chemical vapor deposition method. J. Phys. Chem. C 113, 18527 (2009)

    Article  Google Scholar 

  48. L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Yang, Q. Chen, Structure and deep ultraviolet emission of Co-doped ZnO films with Co3O4 nano-clusters. J. Mater. Chem. Phys. 120, 480–483 (2010)

    Article  Google Scholar 

  49. R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, N. Kumar, Influence of Co-doping on the thermal, structural, and optical properties of sol–gel derived ZnO nanoparticles. J. Mater. Chem. Phys 120, 393 (2010)

    Article  Google Scholar 

  50. T.M. Hammad, J.K. Salem, A. Aamsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compd. 741, 123–130 (2018)

    Article  Google Scholar 

  51. P. Paramasivan, P. Venkatesh, A Novel Approach: Hydrothermal Method of Fine Stabilized Super paramagnetics of Cobalt Ferrite (CoFe2O4) Nanoparticles. J. Supercond. Nov. Magn. 29, 2805–2811 (2016)

    Article  Google Scholar 

  52. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  53. M. Saha, S. Mukherjee, S. Kumar, S. Dey, A. Gayen, Albumin matrix assisted wet chemical synthesis of nanocrystalline MFe2O4 (M = Cu, Co and Zn) ferrites for visible light driven degradation of methylene blue by hydrogen peroxide. RSC Adv. 6, 58125 (2016)

    Article  ADS  Google Scholar 

  54. N.T. To Loan, N.T. Hien Lan, N.T. Thuy Hang,N.Q. Hai, D.T. Tu Anh, Vu Thi Hau, L.V. Tan, and T.V. Tran, CoFe2O4 nanomaterials: effect of annealing temperature on characterization. Magnetic, Photocatalytic, and Photo-Fenton Properties, Processes 7, 885 (2019).

  55. JL OQuinonez, U Pal, MS Villanueva, Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega 3,14986−15001 (2018).

  56. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (John Wiley and Sons, New Jersey, 2009)

    Google Scholar 

  57. L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A.Z. Khajeh, Effect of rare earth substitution on magnetic and structural properties of Co1−xREx Fe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J. Alloys Compd. 662, 441–447 (2016)

    Article  Google Scholar 

  58. S Chakraverty, M Bandyopadhyay, Coercivity of magnetic nanoparticles: a stochastic model. J Phys. Condensed Matter, 19, 216201 (2007).

  59. H. Shenker. Magnetic Anisotropy of Cobalt Ferrite (Co1.01Fe2.00O3.62) and Nickel Cobalt Ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys. Rev. 107, 1246–1249 (1957).

  60. K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar, S. Mukherjee, Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 435–443 (2020)

    Article  Google Scholar 

  61. P.C.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study. J. Alloys Compd. 453, 298–303 (2008)

    Article  Google Scholar 

  62. M.M. Rashad, R.M. Mohamed, H. El-Shall, Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. J. Mater. Process. Technol. 198, 139–146 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Dept. of Education, Govt. of Bihar for providing infrastructure to accomplish this work at the Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, Bihar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubhra, Singh, R.K., Kumar, N. et al. Impact of doping Gd3+rare earth ion on structural, magnetic, and optical properties of cobalt and nickel ferrite nanomaterials. Appl. Phys. A 127, 861 (2021). https://doi.org/10.1007/s00339-021-05011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05011-9

Keywords

Navigation