Skip to main content
Log in

Correlation of magnetocaloric effect and critical behaviour in Ce3+-doped zinc–cobalt ferrite nanoparticles

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this report, a detailed investigation of magnetocaloric properties of \({{\text{Ce}}}^{3+}\)-doped zinc–cobalt spinel ferrite nanoparticles with the generic formula \({{\text{Zn}}}_{0.6}{{\text{Co}}}_{0.4}{{\text{Ce}}}_{x}{{\text{Fe}}}_{2-x}{{\text{O}}}_{4} (x=0.02, 0.04, 0.06)\) synthesized via chemical coprecipitation method had been carried out. Rietveld analysis of the X-ray diffraction (XRD) patterns confirmed the phase purity of the nanoparticles and the corresponding space group was found to be Fd\(\overline{3 }\)m for the series. The shift of microstrain inside the crystal from compressive to tensile regime with doping of Ce confirms the expansion of unit cell in the whole series. Raman spectroscopy also confirmed the spinel structure of the samples. Coexistence of magnetic phases below room temperature is observed from the magnetization measurements with temperature under 500 Oe applied field. A decrease in \({T}_{{\text{C}}}\) as well as \({T}_{{\text{B}}}\) was observed with increase in \(x\) due to weakening of exchange interaction. The transition temperature of Ce-04 nanoparticles is quite close to room temperature which may be beneficial for room temperature magnetic refrigeration. Though the \({{\text{Ce}}}^{3+}\) doping in the series did not favour enhancement of magnetic entropy change, it enhanced the RCP which could be beneficial for room temperature or below room temperature magnetic refrigeration. A good correlation was established between magnetocaloric properties and critical behaviour of \({{\text{Ce}}}^{3+}\)-doped zinc–cobalt spinel ferrite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. Pecharsky VK, Gschneidner Jr KA, Pecharsky AO, Tishin AM (2001) Thermodynamics of the magnetocaloric effect. Phys Rev B 64:1444406

    Article  Google Scholar 

  2. Pecharsky VK, Gschneidner Jr KA (1999) Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater 200(1–3):44–56

    Article  CAS  Google Scholar 

  3. Bahhar S, Boutahar A, Omari LH, Lemziouka H, Hlil EK, Bioud H, Dhahri E (2021) Structural, magnetic and magnetocaloric properties of TMCeFeO4 (TM= Mn, Co) spinel ferrites powders. J Magn Magn Mater 539:168416

    Article  CAS  Google Scholar 

  4. Bahhar S, Lemziouka H, Boutahar A, Bioud H, Lassri H, Hlil EK (2019) Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2−xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites Chem. Phys Lett 716:186–191

    CAS  Google Scholar 

  5. Ghosh MP, Mukherjee S (2020) Ce3+-doped nanocrystalline cobalt–zinc spinel ferrite: microstructural, magnetic, and optical characterizations. J Mater Sci: Mater Electron 31(8):6207–6216

    CAS  Google Scholar 

  6. Abdellatif MH, El-Komy GM, Azab AA (2017) Magnetic characterization of rare earth doped spinel ferrite. J Magn Magn Mater 442:445–452

    Article  CAS  Google Scholar 

  7. Almessiere MA, Korkmaz AD, Slimani Y, Nawaz M, Ali S, Baykal A (2019) Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceram Int 45(3):3449–3458

    Article  CAS  Google Scholar 

  8. Ghosh MP, Mandal S, Mukherjee S (2020) Correlations between microstructural and magnetic properties of Gd3+ doped spinel ferrite nanoparticles. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-00112-5

    Article  Google Scholar 

  9. Zhong XC, Guo XJ, Zou SY, Yu HY, Liu ZW, Zhang YF, Wang KX (2018) Improving soft magnetic properties of Mn-Zn ferrite by rare-earth ions doping. AIP Adv 8:047807

    Article  Google Scholar 

  10. Kouki N, Hcini S, Boudard M, Aldawas R, Dhahri A (2019) Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv 9(4):1990–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oumezzine E, Hcini S, Baazaoui M, Hlil EK, Oumezzine M (2015) Structural, magnetic and magnetocaloric properties of Zn0.6xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. J Powtec 278:189–195

    CAS  Google Scholar 

  12. Felhi R, Omrani H, Koubaa M, Koubaa W-C, Cheikhrouhou A (2018) Enhancement of magnetocaloric effect around room temperature in Zn0.7Ni0.3xCuxFe2O4 (0 ≤ x ≤ 0.2) spinel ferrites. J Alloy Compd 758:237–246

    Article  CAS  Google Scholar 

  13. El Maalam K, Fkhar L, Hamedoun M, Mahmoud A, Boschini F, Hlil EK, Benyoussef A, Mounkachi O (2017) Magnetocaloric properties of zinc-nickel ferrites around room temperature. J Supercond Nov Magn 30:1943–1947

    Article  Google Scholar 

  14. Safi R, Ghasemi A, Razavi-Shoja R, Ghasemi E, Sodaee T (2016) Rietveld structure refinement, cations distribution and magnetic features of CoFe2O4 nanoparticles synthesized by co-precipitation, hydrothermal, and combustion methods. Ceram Int 42(5):6375–6382

    Article  CAS  Google Scholar 

  15. Tamboli QY, Patange SM, Mohanta YK, Sharma R, Zakde KR (2023) Green synthesis of cobalt ferrite nanoparticles: an emerging material for environmental and biomedical applications. J Nanomater 1–15:9770212

    Google Scholar 

  16. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320(19):2390–2396

    Article  CAS  Google Scholar 

  17. Caltun O, Dumitru I, Feder M, Lupu N, Chiriac H (2008) Substituted cobalt ferrites for sensors applications. J Magn Magn Mater 320(20):e869–e873

    Article  CAS  Google Scholar 

  18. Pydiraju TRK, Rao KS, Rao PA, Varma MC, Kumar AS, Rao HK (2021) Co-Cd nanoferrite for high frequency application with phenomenal rise in DC resistivity. J Magn Magn Mater 524:167662

    Article  CAS  Google Scholar 

  19. Hannour A, Vincent D, Kahlouche F, Tchangoulian A, Neveu S, Dupuis V (2014) Self-biased cobalt ferrite nanocomposites for microwave applications. J Magn Magn Mater 353:29–33

    Article  CAS  Google Scholar 

  20. Franco V, Blázquez JS, Ipus JJ, Law JY, Ramírez-Moreno LM, Conde A (2018) Magnetocaloric effect: From materials research to refrigeration devices. Prog Mater Sci 93:112–232

    Article  Google Scholar 

  21. Benedict MA, Sherif SA, Schroeder M, Beers DG (2017) The impact ofmagnetocaloric properties on refrigeration performance and machine designInt. J Refrig 74:576–583

    Article  Google Scholar 

  22. Gopalan EV, Al-Omari IA, Kumar Sakthi D, Yoshida Y, Joy PA, Anantharaman MR (2010) Inverse magnetocaloric effect in sol–gel derived nanosized cobalt ferrite. Appl Phys A 99:497–503

    Article  CAS  Google Scholar 

  23. Hadouch Y, Mezzane D, Amjoud M, Hajji L, Gagou Y, Kutnjak Z, Laguta V, Kopelevich Y, El Marssi M (2022) Enhanced relative cooling power and large inverse magnetocaloric effect of Cobalt ferrite nanoparticles synthesized by auto-combustion method. J Magn Mater 563:169925

    Article  CAS  Google Scholar 

  24. Mandal S, Mukerjee S (2023) Magnetocaloric effect and critical behaviour in zinc doped cobalt ferrite nanoparticles. J Solid State Chem 323:124008

    Article  CAS  Google Scholar 

  25. Sonia MML, Anand S, Vinosel VM, Janifer MA, Pauline S (2018) Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J Mater Sci Mater Electron 29:15006–15021

    Article  CAS  Google Scholar 

  26. Dixit G, Negi P, Singh JP, Srivastava RC, Agrawal HM (2013) Effect of Ce doping on the magnetic properties of NiFe2O4 nanoparticles. J Supercond Nov Mater 26:1015–1019

    Article  CAS  Google Scholar 

  27. Kamran M, Anis-ur-Rehman M (2020) Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J Alloy Compd 822:153583

    Article  CAS  Google Scholar 

  28. Peng Z, Fu X, Ge H, Fu Z, Wang C, Qi L, Miao H (2011) Effect of Pr3+ doping on magnetic and dielectric properties of Ni–Zn ferrites by one-step synthesis. J Magn Mater 323(20):2513–2518

    Article  CAS  Google Scholar 

  29. Aakash NP, Mohan R, Mukherjee S (2017) Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites. J Magn Magn Mater 441:710–717

    Article  CAS  Google Scholar 

  30. Murugesan C, Chandrasekaran G (2015) Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv 5:73714–73725

    Article  CAS  Google Scholar 

  31. Ghosh MP, Datta S, Sharma R, Tanbir K, Kar M, Mukherjee S (2021) Copper doped nickelferrite nanoparticles: Jahan Teller distortion and its effect on microstructural, magnetic and electronic properties. Mat Sc & Engg B 263:114864

    Article  CAS  Google Scholar 

  32. Graves PR, Johnston C, Campaniello J-J (1988) Raman scattering in spinel structure ferrites. Mat Res Bull 23(11):1651–1660

    Article  CAS  Google Scholar 

  33. Sanpo N, Berndt CC, Wang J (2012) Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J Appl Phys 112(8):084333

    Article  Google Scholar 

  34. Ansari SM, Ghosh KC, Devan RS, Sen D, Sastry PU, Kolekar YD, Ramana CV (2020) Eco-friendly synthesis, crystal chemistry, and magnetic properties of manganese-substituted CoFe2O4 Nanoparticles. ACS Omega 5:19315–19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alzoubi GM, Alsmadi AM, Alnawashi GA, Salameh B, Shatnawi M, Alnemrat S (2020) Coexistence of superparamagnetism and spin-glass like behavior in zinc-substituted cobalt ferrite nanoparticles. Appl Phys A 126:512

    Article  CAS  Google Scholar 

  36. Pati S, Philip J (2013) A facile approach to enhance the high temperature stability of magnetite nanoparticles with improved magnetic property. J Appl Phys 113:044314

    Article  Google Scholar 

  37. Tozri A, Alhalafi Sh, Alrowaili Z-A, Horchani M, Omri A, Skini R, Ghorai S, Benali A, Costa BFO, Ildiz GO (2022) Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO.3. J Alloys Compd 890:161739

    Article  CAS  Google Scholar 

  38. Zhou SM, Guo YQ, Zhao JY, Zhao SY, Shi L (2010) Nature of short-range ferromagnetic ordered state above TC in double perovskite La2NiMnO6. Appl Phys Lett 96(26):262507

    Article  Google Scholar 

  39. Zheng X, Gao T, Jing W, Wang XY, Liu YS, Chen B, Dong HL, Chen ZQ, Cao SC, Cai CB, Marchenkov VV (2019) Evolution of Griffiths phase and spin reorientation in perovskite manganites. J Magn Magn Mater 491:165611

    Article  CAS  Google Scholar 

  40. Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17

    Article  Google Scholar 

  41. Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S, Park JG (2008) Tricritical point and magnetocaloric effect of Nd(1x)SrxMnO3. J Appl Phys 103(7):07319

    Article  Google Scholar 

  42. Han LA, Zhai WL, Bai B, Zhu HZ, Yang J, Yan ZX, Zhang T (2019) Critical behavior in Ni0.15Cu0.15Zn0.7Fe2O4 spinel ferrite. Ceram Int 45(11):14322–14326

    Article  CAS  Google Scholar 

  43. Jammalamadaka SN, Rao SS, Bhat SV, Vanacken J, Moshchalkov VV (2012) Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO.3. J Appl Phys 112:083917

    Article  Google Scholar 

  44. Arrott A, Noakes JE (1967) Approximate equation of state for nickel near its critical temperature. Phys Rev Lett 19:786–789

    Article  CAS  Google Scholar 

  45. Debbebi IS, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil EK (2017) Magnetic, magnetocaloric and critical behavior investigation of La0.69Dy0.01Ca0.3MnO3. J Mater Sci Mater Electron 28:14000–14009

    Article  Google Scholar 

  46. Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its curie point. Phys Rev 136:A1626–A1632

    Article  Google Scholar 

  47. Widom B (1965) Surface tension and molecular correlations near the critical point. J Chem Phys 43(11):3892–3897

    Article  CAS  Google Scholar 

  48. Fisher ME, Ma SK, Nickel B-G (1972) Critical exponents for long-range interactions. Phys Rev Lett 29:917–920

    Article  Google Scholar 

  49. Smari M, Walha I, Omari A, Rousseau J-J, Dhahri E, Hlil E-K (2014) Critical parameters near the ferromagnetic–paramagnetic phase transition in La0.5Ca0.5xAgxMnO3 compounds (0.1≤ x ≤ 0.2). Ceram Int 40(7):8945–8951

    Article  CAS  Google Scholar 

  50. Nair S, Banerjee A, Narlikar AV, Prabhakaran D, Boothroyd AT (2003) Observation of three-dimensional Heisenberg-like ferromagnetism in single crystal La0.875Sr0.125MnO3. Phys Rev B 68:132404

    Article  Google Scholar 

  51. Han LA, Zhai WL, Bai B, Zhu HZ, Yang J, Yan ZX, Zhang T (2019) Critical behavior in Ni0.15Cu0.15Zn0.7Fe2O4 spinel ferrite. J Ceram Int 45(11):14322–14326

    Article  CAS  Google Scholar 

  52. Franco V, Conde A (2010) Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int J Refrig 33(3):465

    Article  CAS  Google Scholar 

  53. Franco V, Conde A, Provezano V, Shull RD (2010) Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co). J Magn Mater 322(2):2183

    Article  Google Scholar 

  54. Singh V, Bag P, Rawat R, Nath R (2020) Critical behavior and magnetocaloric effect across the magnetic transition in Mn1+x Fe 4–x Si3. Sci Rep 10:6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Franco V, Conde A, Kuz’min MD, Romero-Enrique JM (2009) The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident. J Appl Phys 105:07A917

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Dr. R. J. Choudhary of UGC-DAE-CSR, Indore centre for providing magnetic measurements facility. One of the author S. Mandal (UGC-Ref. No.: 1385/ (CSIR-UGC NET JUNE 2019) acknowledges University Grant Commission for funding his fellowship to do this research work.

Author information

Authors and Affiliations

Authors

Contributions

SM contributed to the conceptualization, methodology, formal analysis, and writing—original draft. SM contributed to the resources, supervision, and writing—review and editing.

Corresponding author

Correspondence to Samrat Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Mukherjee, S. Correlation of magnetocaloric effect and critical behaviour in Ce3+-doped zinc–cobalt ferrite nanoparticles. J Mater Sci 59, 7299–7317 (2024). https://doi.org/10.1007/s10853-024-09598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09598-1

Navigation