Skip to main content
Log in

Effect of Bi and Sm ion doping in barium titanate ceramic: dielectric, optical and ferroelectric study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Studies of dielectric, optical and ferroelectric characteristics of trivalent Bi/Sm-modified barium titanate complex perovskite of a composition Bi0.5Ba0.5Sm0.5Ti0.5O3 (BBSTO), synthesized by adopting a mixed oxide (solid state) reaction technique, have been reported here. A single-phase tetragonal (space group P4mm) symmetry of BBSTO, after the evaluation of X-ray diffraction (XRD) data and pattern by Rietveld refinement, has been proposed. The microstructural analysis of pellet sample of BBSTO, carried out by field emission scanning electron microscope (FE-SEM), has shown uniform distribution and compactness of grains of varying size. Analysis of Fourier transform infrared spectrum of the material has provided the stretching vibration of Ba–Ti–O and O–Ti–O bonds, BiO6 (octahedral) as well as the bending vibration of Ti–O in octahedral [TiO6]2− of BaTiO3. The UV–visible absorption spectra of the material have been used to evaluate the optical band gap of 1.78 and 1.56 eV for the direct and indirect allowed transition, respectively. The analysis of dielectric and electrical data, obtained in a wide range of temperature (25–500 °C) at different frequency (1 kHz–1000 kHz), exhibits various characteristics including dielectric relaxation and a ferroelectric phase transition. The mixed temperature coefficient of resistance (TCR) behavior, both negative-TCR and positive-TCR is observed in the BBSTO perovskite. The conduction mechanism of the material was studied with the help of the Jonscher’s power law. The conduction mechanism was also found to follow the correlated barrier hopping (CBH) model. The logJ versus logE plots were analyzed to understand the leakage current behavior of the material with the help the SCLC (space charge-limited conduction) mechanism and Schottky mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Scott, C. Paz de Araujo, Science 246, 1400 (1990)

    Article  ADS  Google Scholar 

  2. P. Muralt, J. Micromech. Microeng. 10, 136 (2000)

    Article  ADS  Google Scholar 

  3. Z. Zhao, X. Liang, T. Zhang, K. Hu, S. Li, Y. Zhang, J. Eur. Ceram. Soc. 40, 712 (2020)

    Article  Google Scholar 

  4. L. Wu, X. Wang, Z. Shen, L. Li, J. Am. Ceram. Soc. 100, 265 (2016)

    Article  Google Scholar 

  5. L. Gao, L. Zhan, W. Liu, Y. Zhang, Z. Xie, J. Ren, J. Mater. Sci.: Mater. Electron. 30, 12107 (2019)

    Google Scholar 

  6. H. Gong, X. Wang, S. Zhang, L. Li, J. Mater. Sci. 50, 3523 (2015)

    Article  ADS  Google Scholar 

  7. N. Baskaran, H. Chang, J. Mater. Sci. Mater. Electron. 12, 527 (2001)

    Article  Google Scholar 

  8. K. Zhang, L. Li, M. Wang, W. Luo, Ceram. Int. 46, 25881 (2020)

    Article  Google Scholar 

  9. N. Sareecha, W.A. Shah, A. Maqsood, M. Anis-ur-Rehman, M.L. Mirza, Mater. Chem. Phys. 193, 42 (2017)

    Article  Google Scholar 

  10. A. Kumari, A. Vij, Mohd. Hashim, A. Dubey, and S. Kumar, in Milan (Italy), p. 030012 (2018)

  11. M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Physica B 411, 26 (2013)

    Article  ADS  Google Scholar 

  12. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475 (2008)

    Article  Google Scholar 

  13. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloy. Compd. 579, 473 (2013)

    Article  Google Scholar 

  14. A. Kumari, K. Kumari, F. Ahmed, A. Alshoaibi, P.A. Alvi, S. Dalela, M.M. Ahmad, R.N. Aljawfi, P. Dua, A. Vij, S. Kumar, Vacuum 184, 109872 (2021)

    Article  ADS  Google Scholar 

  15. F. A. Ismail, R. A. M. Osman, and M. S. Idris, in Penang (Malaysia), p. 090005 (2016)

  16. Y.A. Zulueta, T.C. Lim, J.A. Dawson, J. Phys. Chem. C 121, 23642 (2017)

    Article  Google Scholar 

  17. M. Padhy, R.N.P. Choudhary, P.G.R. Achary, J. Mater. Sci.: Mater. Electron. 32, 20625 (2021)

    Google Scholar 

  18. M.-D. Li, X.-G. Tang, S.-M. Zeng, Y.-P. Jiang, Q.-X. Liu, T.-F. Zhang, W.-H. Li, J. Materiomics 4, 194 (2018)

    Article  Google Scholar 

  19. P. Padmini, T. Kutty, J. Mater. Sci. Mater. Electron. 5, 203 (1994)

    Article  Google Scholar 

  20. H.-I. Hsiang, C.-S. Hsi, C.-C. Huang, S.-L. Fu, J. Alloy. Compd. 459, 307 (2008)

    Article  Google Scholar 

  21. P.G.R. Achary, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 6805 (2018)

    Article  Google Scholar 

  22. M.E.A. Araghi, N. Shaban, M. Bahar, Mater. Sci. Pol. 34, 63 (2016)

    Article  ADS  Google Scholar 

  23. A. Arabaci, Ö. Serin, J. Mater. Eng. Perform. 24, 2730 (2015)

    Article  Google Scholar 

  24. G.S. Lotey, N.K. Verma, Mater. Sci. Semicond. Process. 21, 206 (2014)

    Article  Google Scholar 

  25. S. Hao, D. Fu, J. Li, W. Wang, B. Shen, Int. J. Inorg. Chem. 2011, 4 (2011)

    Google Scholar 

  26. M. Ghayebloo, M. Tavoosi, M. Rezvani, Infrared Phys. Technol. 83, 62 (2017)

    Article  ADS  Google Scholar 

  27. A. Satapathy, E. Sinha, J Appl Spectrosc 84, 948 (2018)

    Article  ADS  Google Scholar 

  28. J. Baedi, F. Mircholi, Optik 127, 1503 (2016)

    Article  ADS  Google Scholar 

  29. N. Oshime, J. Kano, N. Ikeda, T. Teranishi, T. Fujii, T. Ueda, T. Ohkubo, J. Appl. Phys. 120, 154101 (2016)

    Article  ADS  Google Scholar 

  30. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, J. Mater. Sci. Mater. Electron. 29, 5014 (2018)

    Article  Google Scholar 

  31. K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 11211 (2016)

    Article  Google Scholar 

  32. R. Das, R.N.P. Choudhary, J. Alloys Comp. 853, 157240 (2021)

    Article  Google Scholar 

  33. B.B. Arya, R.N.P. Choudhary, Ceram. Int. 46, 4222 (2020)

    Article  Google Scholar 

  34. M. Padhy, D. Khatua, S.K. Dehury, R.N.P. Choudhary, P.G.R. Achary, Bull. Mater. Sci. 43, 258 (2020)

    Article  Google Scholar 

  35. K. Yao, S. Chen, M. Rahimabady, M.S. Mirshekarloo, S. Yu, S. Chen, M. Rahimabady, S. Yu, F.E.H. Tay, L. Lu, M.S. Mirshekarloo, T. Sritharan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968 (2011)

    Article  Google Scholar 

  36. W.Q. Cao, L. Yang, M.M. Ismail, P. Feng, Ceram. Int. 37, 1587 (2011)

    Article  Google Scholar 

  37. M. Padhy, S. Dehury, R.N. Choudhary, P.G. Achary, Appl. Phys. A 126, 655 (2020)

    Article  ADS  Google Scholar 

  38. Ch. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    Article  ADS  Google Scholar 

  39. N. Pradhani, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. Mater. 1, 015007 (2018)

    Article  Google Scholar 

  40. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, M. Hajdúchová, V. Enev, J. Mater. Sci. Mater. Electron. 28, 6245 (2017)

    Article  Google Scholar 

  41. M. Padhy, D. Khatua, R.N.P. Choudhary, P.G.R. Achary, Ferroelectrics 572, 135 (2021)

    Article  Google Scholar 

  42. M. Padhy, R. N. P. Choudhary, and P. Ganga Raju Achary (2021) SPIN 0, 2150019

  43. P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 17344 (2017)

    Article  Google Scholar 

  44. S. Terny, P.E. di Prátula, J. De Frutos, M.A. Frechero, J. Non-Cryst. Solids 444, 49 (2016)

    Article  ADS  Google Scholar 

  45. M. Usman, K. Rasool, S.S. Batool, Z. Imran, M. Ahmad, H. Jamil, M.A. Rafiq, M.M. Hasan, J. Mater. Sci. Technol. 30, 748 (2014)

    Article  Google Scholar 

  46. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, J. Electron. Mater. 47, 5458 (2018)

    Article  ADS  Google Scholar 

  47. X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys. 94, 5163 (2003)

    Article  ADS  Google Scholar 

  48. M. Tihtih, J.F.M. Ibrahim, E. Kurovics, M. Abdelfattah, J. Phys. Conf. Ser. 1527, 012043 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is funded by the UGC-DAE-CSR, Mumbai (CRS-M-297). The authors also would like to give their sincere thanks to Dr. Pratap Kumar Sahoo of National Institute of Science Education and Research (NISER) Bhubaneswar for his kind support in the characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ganga Raju Achary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhy, M., Choudhary, R.N.P. & Achary, P.G.R. Effect of Bi and Sm ion doping in barium titanate ceramic: dielectric, optical and ferroelectric study. Appl. Phys. A 127, 847 (2021). https://doi.org/10.1007/s00339-021-04990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04990-z

Keywords

Navigation