Skip to main content
Log in

Optical Band Gap and Photoluminescence Studies of Samarium-Doped Barium Zirconate Perovskite Prepared by Solid State Reaction Route

  • Published:
Journal of Applied Spectroscopy Aims and scope

The structural and optical properties of Ba1–xSm2x/3ZrO3 (x = 0.02, 0.04, 0.06, 0.08, 0.10) ceramics prepared by the solid-state reaction method are considered. The x-ray diffraction data confirm the cubic perovskite phase of all the compositions with space group Pm \( \overline{3}\hbox{--} \mathrm{m} \). The effect of Sm3+ substitution on the optical band gap and photoluminescence properties of barium zirconate are discussed. The optical band gap decreases from 3.43 to 2.98 eV with increasing Sm3+ content. The Urbach energy has been found to increase with rise in concentration of dopant species. The photoluminescence spectra show an intense violet–blue emission characteristic of the barium zirconate perovskite. Visible emission due to intra-4f transitions of Sm3+ ions from 4G5/2 higher excited state to 6Hj ( j = 5/2, 7/2, 9/2 etc.) ground states has been observed in the range of 550–700 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Reddy, B. D. P Raju, N. J. Sushma, N. S. Dhoble, and S. J. Dhoble, Renew. Sustain. Energy Rev., 5, 1566–1584 (2015).

    Google Scholar 

  2. A. Kumari, V. K. Rai, and K. Kumar, Spectrochim. Acta A, 127, 98–101 (2014).

    Article  ADS  Google Scholar 

  3. Y. Yuana, X. Zhanga, L. Liua, X. Jianga, J. Lva, Z. Lia, and Z. Zoua, Int. J. Hydrogen Energy, 33, 5941–5946 (2008).

    Article  Google Scholar 

  4. L. S. Cavalcante, V. M. Longo, M. Zampieri, J. W. Espinosa, P. S. Pizani, J. R. Sambrano, J. A. Varela, E. Longo, M. L. Simões, and C. A. Paskocimas, J. Appl. Phys., 103, 063527 (2008).

    Article  ADS  Google Scholar 

  5. R. Borja-Urby, L. A. D. Torres, P. Salas, C. A. Chavez, and O. Meza, Mater. Sci. Eng. B, 176, 1388–1392 (2011).

    Article  Google Scholar 

  6. J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, J. Appl. Phys., 104, 023505 (2008).

    Article  ADS  Google Scholar 

  7. A. C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), LAUR, 86–748 (2004).

  8. I. C. Nogueira, L. S. Cavalcante, P. F. S. Pereira, M. M. de Jesus, J. M. Rivas Mercury, N. C. Batista, M. Siu Lid, and E. Longo, J. Appl. Crystallogr., 46, 1434–1446 (2013).

    Article  Google Scholar 

  9. L. S. Cavalcante, J. C. Sczancoski, V. M. Longo, F. S. De Vicente, J. R. Sambrano, A. T. de Figueiredo, C. J. Dalmaschio, M. Siu Li, J. A. Varela, and E. Longo, Opt. Commun., 281, 3715–3720 (2008).

    Article  ADS  Google Scholar 

  10. V. M. Longo, L. S. Cavalcante, A. T. de Figueiredo, and L. P. S. Santos, Appl. Phys. Lett., 90, 091906 (2007).

    Article  ADS  Google Scholar 

  11. M. L. Moreira, M. F. C. Gurgel, G. P. Mambrini, E. R. Leite, P. S. Pizani, J. A. Varela, and E. Longo, J. Phys. Chem. A, 112, 8938–8942 (2008).

    Article  Google Scholar 

  12. S. K. Gupta, P. S. Ghosh, N. Pathak, A. Aryab, and V. Natarajana, RSC Adv., 4, 29202 (2014).

    Article  Google Scholar 

  13. M. Borah and D. Mohanta, J. Appl. Phys., 112, 124321 (2012).

    Article  ADS  Google Scholar 

  14. N. Kumari, A. Ghosh, S. Tewari, and A. Bhattacharjee, Indian J. Phys., 88, 65–70 (2014).

    Article  ADS  Google Scholar 

  15. S. Parida, A. Satapathy, E. Sinha, A. Bisen, and S. K. Rout, Metall. Mater. Trans. A, 46A, 1277–1286 (2015).

    Article  ADS  Google Scholar 

  16. P. G. Sundell, M. E. Björketun, and G. Wahnström, Phys. Rev. B, 73, 104112 (2006).

    Article  ADS  Google Scholar 

  17. R. Terki, H. Feraoun, G. Bertrand, and H. Aourag, Phys. Status Solidi, 242, 1054–1062 (2005).

    Article  Google Scholar 

  18. P. Barik, T. K. Kundu, and S. Ram, Philos. Mag. Lett., 89, 545–555 (2009).

    Article  ADS  Google Scholar 

  19. G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidski, and G. A. Denisenko, Phys. Solid State, 50, 1464–1472 (2008).

    Article  ADS  Google Scholar 

  20. G. E. Malashkevich, I. M. Mel'nichenko, E. N. Poddenezhny, and A. V. Semchenko, Phys. Solid State, 40, 420–426 (1998).

    Article  ADS  Google Scholar 

  21. S. K. Raut, N. S. Dhoble, K. Park, and S. J. Dhoble, Mater. Chem. Phys., 147, 594–603 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sinha.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, pp. 864–869, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, A., Sinha, E. Optical Band Gap and Photoluminescence Studies of Samarium-Doped Barium Zirconate Perovskite Prepared by Solid State Reaction Route. J Appl Spectrosc 84, 948–953 (2018). https://doi.org/10.1007/s10812-018-0569-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0569-9

Keywords

Navigation