Skip to main content
Log in

Structural, electrical and dielectric properties of double perovskites: BiHoZnZrO6 and BiHoCuTiO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two lead-free double perovskites; BiHoZnZrO6 and BiHoCuTiO6 were synthesized by a cost effective solid-state reaction technique. When the pair of elements (Zn and Zr) are replaced by another pair (Cu and Ti), the monoclinic crystal structure of BiHoZnZrO6 changes to orthorhombic system (for BiHoCuTiO6). The homogeneous distribution of the grains and formation of desired compounds in both the double pervoskites have been ascertained with the analysis of microscopic images and energy dispersive spectra. Detailed studies of the complex impedance spectra revealed that the diectric and electrical properties of both the pervoskites have strongly been influenced by the variation of frequency as well as temperature. The grains, grain boundaries and electrode were found to have profound effect on the electrical and dielectric properties of both the materials, which have provided the basis to understand the electrical conduction mechanism and micro-structure behavior of the materials.The electrical parameters, such as, bulk and grain boundary resistance and capacitance of the materials were obtained by designing an equivalent circuits, and subsequent modelling of the impedance behaviour. The ac conductivity, electrical modulus and the transport properties of both the pervoskites were compared in details in the present communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Veksler, M.P. Teptelev, Lithos. 26, 177 (1990)

    Article  Google Scholar 

  2. C.A. Triana, L.T. Corredor, D.A.L. Téllez, J. Roa-Rojas, Mater. Res. Bull. 46, 2478 (2011)

    Article  Google Scholar 

  3. P.A. Cox, Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties Clarendon Press, Oxford (2010)

    Google Scholar 

  4. L. Liu, X. Zhou, Y. Wang, S. Li, R. Yin, P. Guo, J. Zhao, X. Zhao, B. Li, Int. J. Hydrogen Energy. 42, 14905 (2017)

    Article  Google Scholar 

  5. C. Duan, D. Hook, Y. Chen, J. Tong, R. O’Hayre, Energy Environ. Sci. 10, 176 (2017)

    Article  Google Scholar 

  6. Q.A. Islam, M.W. Raja, R.N. Basu, J. Am. Ceram. Soc. 100, 1360 (2017)

    Article  Google Scholar 

  7. Y. Xue, H. Miao, B. Li, S. Sun, Q. Wang, S. Li, L. Chen, Z. Liu, J. Mater. Chem. A. 5, 6411 (2017)

    Article  Google Scholar 

  8. S.B. Reddy, K. Mohan Kant, K.P. Rao, M. Opel, R. Gross, M.S.R. Rao, J. Magn. Magn. Mater. 303, e332 (2006)

    Article  Google Scholar 

  9. K. Reichmann, A. Feteira, M. Li, Materials. 8, 8467 (2015)

    Article  Google Scholar 

  10. J.D. Bobić, B.D. StojanoviĆ, C.O. Paiva-Santos, L.J. Zivkovic, M.M. Vijatović, M. Cilense, Ferroelectrics. 368, 145 (2008)

    Article  Google Scholar 

  11. W. Zhou, B. Chu, J. Eur. Ceram. Soc. 37, 2373 (2017)

    Article  Google Scholar 

  12. P. Tamrakar, P.K. Bajpai, AIP Conf. Proc. 1837, 40062 (2017)

    Article  Google Scholar 

  13. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017)

    Article  Google Scholar 

  14. G. Volonakis, A.A. Haghighirad, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 0, null (n.d.)

  15. K. Du, W. Meng, X. Wang, Y. Yan, D.B. Mitzi, Angew. Chemie Int. Ed. 56, 8158 (2017)

    Article  Google Scholar 

  16. F. Wei, Z. Deng, S. Sun, F. Zhang, D.M. Evans, G. Kieslich, S. Tominaka, M.A. Carpenter, J. Zhang, P.D. Bristowe, A.K. Cheetham, Chem. Mater. 29, 1089 (2017)

    Article  Google Scholar 

  17. J. Zhou, Z. Xia, M.S. Molokeev, X. Zhang, D. Peng, Q. Liu, J. Mater. Chem. A. 5, 15031 (2017)

    Article  Google Scholar 

  18. X. Cao, Y. Liu, Z. Huang, M. Fang, X. Wu, Ceram. Int. 41, 14184 (2015)

    Article  Google Scholar 

  19. O.R. Burgos, D. Martinez, P.C.A. Vargas, D.A. Landinez Tellez, and J. Roa-Rojas, E.V Lopez, A.S Santos. Rev. Mex. Física. 58, 44 (2012)

    Google Scholar 

  20. M. Bonilla, D.A.L. Téllez, J.A. Rodríguez, J.A. Aguiar, J. Roa-Rojas, J. Magn. Magn. Mater. 320, e397 (2008)

    Article  Google Scholar 

  21. J. Kim, A. Paul, P.A. Crowell, S.J. Koester, S.S. Sapatnekar, J.P. Wang, C.H. Kim, Proc. IEEE. 103, 106 (2015)

    Article  Google Scholar 

  22. K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 11211 (2016)

    Article  Google Scholar 

  23. S.K. Dehury, K. Parida, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 10441 (2017)

    Article  Google Scholar 

  24. K. Parida, S.K. Dehury, R.N.P. Choudhary, Mater. Sci. Eng. B. 225, 173 (2017)

    Article  Google Scholar 

  25. S.K. Dehury, P.G.R. Achary, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 1 (2017)

  26. T. Chakraborty, H.S. Nair, H. Nhalil, K. Ramesh Kumar, A.M. Strydom, S. Elizabeth, J. Phys. Condens. Matter. 29, 25804 (2017)

    Article  Google Scholar 

  27. L. Alexander, H.P. Klug, J. Appl. Phys. 21, (1950)

  28. R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)

    Article  Google Scholar 

  29. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  30. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292 (2005)

    Article  Google Scholar 

  31. D.C.L. Vasconcelos, V.C. Costa, E.H.M. Nunes, A.C.S. Sabioni, M. Gasparon, W.L. Vasconcelos, Mater. Sci. Appl. 2, 1375 (2011)

    Google Scholar 

  32. M. Ram, J. Alloys Compd. 509, 1744 (2011)

    Article  Google Scholar 

  33. A.K. Jonscher, Nature. 267, 673 (1977)

    Article  Google Scholar 

  34. A.K. Jonscher, J. Phys. D. Appl. Phys. 32, R57 (1999)

    Article  Google Scholar 

  35. J. Ross Macdonald, Solid State Ionics. 13, 147 (1984)

    Article  Google Scholar 

  36. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    Article  Google Scholar 

  37. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B Condens. Matter. 387, 56 (2007)

    Article  Google Scholar 

  38. M.A.E.-F. Gabal, Y.M. Al, A.Y. Angari, Obaid, Comptes Rendus Chim. 16, 704 (2013)

    Article  Google Scholar 

  39. A. Belboukhari, E. Choukri, Y. Gagou, R. Elmoznine, N. Abdelmoula, A. Neqali, M. El Marssi, H. Khemakhem, D. Mezzane, Superlattices Microstruct. 71, 7 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Kind help in some experiment work and analysis of Dr. R K.Lenka of BARC, Bombay are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Dehury.

Ethics declarations

Conflict of interest

The authors of the present paper declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achary, P.G.R., Dehury, S.K. & Choudhary, R.N.P. Structural, electrical and dielectric properties of double perovskites: BiHoZnZrO6 and BiHoCuTiO6. J Mater Sci: Mater Electron 29, 6805–6816 (2018). https://doi.org/10.1007/s10854-018-8667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8667-2

Navigation