Skip to main content

Advertisement

Log in

Disordering kinetics in monocrystalline and epitaxial Si upon energy deposition induced by dual-beam ion irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect on the amorphization process of the simultaneous electronic (Se) and nuclear (Sn) energy deposition occurring upon dual-beam irradiation experiments was studied in both bulk Si single-crystals (Si-b) and epitaxial Si thin layers (Si-tl). For this purpose, 900 keV I (for Sn) and 27 MeV Fe (for Se) ions were used at different fluences in order to get complete disordering kinetics. These latter were determined through the monitoring of both the disorder fraction, obtained via Rutherford backscattering spectrometry in channeling experiments and the elastic strain derived from X-ray diffraction measurements. Raman spectroscopy 2D-maps were also recorded to support the results of the two other techniques. RBS/C data indicate that Sn irradiation alone leads to full amorphization of the irradiated region in both Si-b and Si-tl at a fluence of 1.5 × 1014 cm−2. In contrast, during the dual-beam irradiation (Sn & Se), such a complete phase transformation is prevented up to a fluence of 3 × 1014 cm−2. Similarly, the maximum elastic strain developing before the loss of crystallinity reaches a maximum of ~ 1% at 1.5 × 1014 cm−2, but it remains below 0.2% at the same fluence in the Sn & Se regime for which full amorphization is not detected. These results indicate that the electronic energy deposition induces a significant dynamic annealing of the damage created by the nuclear energy loss, and this annealing occurs over the entire investigated fluence range (i.e., up to 3 × 1014 cm−2). The annealing efficiency is shown to be lower for Si-tl, as demonstrated by the disorder and strain values that are always larger than for the bulk counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Hull. Properties of crystalline silicon, ed. (University Virginia, INSPEC, London, 1999)

  2. S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9, 20–25 (2006)

    Article  Google Scholar 

  3. G. Kamarinos, P. Felix, J. Phys. D: Appl. Phys. 29, 487 (1996)

    Article  ADS  Google Scholar 

  4. B.Y. Nguyen, G. Celler, C. Mazuré, A review of SOI technology and its applications. J. Integr. Circuits Syst. 4, 51–54 (2009)

    Article  Google Scholar 

  5. P.J. Dervan, Silicon strip detectors for the ATLAS HL-LHC upgrade. J. Instrum. 7, C03019 (2012)

    Article  Google Scholar 

  6. M. Moll, Displacement damage in silicon detectors for high energy physics. IEEE Trans. Nucl. Sci. 65, 1561–1582 (2018)

    Article  ADS  Google Scholar 

  7. A. Morselli, Silicon detectors in space for γ-ray astroparticle physics. Nucl. Instr. Methods A 596, 79–84 (2008)

    Article  ADS  Google Scholar 

  8. R.N. Hall, Silicon photovoltaic cells. Solid-State Electron. 24, 595–616 (1981)

    Article  ADS  Google Scholar 

  9. N. Dimov, Y. Xia, M. Yoshio, Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features. J. Power Sour. 171, 886–893 (2007)

    Article  ADS  Google Scholar 

  10. W.R. McGehee, E. Strelcov, V.P. Oleshko, C. Soles, N.B. Zhitenev, J.J. McClelland, Direct-Write Lithiation of Silicon Using a Focused Ion Beam of Li+. ACS Nano 13, 8012–8022 (2019)

    Article  Google Scholar 

  11. C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A.J. Auberton-Herve, T. Bargen, Wafer bonding and H-implantation mechanisms involved in the smart-cut technology. Mater. Sci. Eng. B 46, 14–19 (1997)

    Article  Google Scholar 

  12. K.E. Manchester, C.B. Sibley, G. Alton, Doping of silicon by ion implantation. Nucl. Instr. Methods 38, 169–174 (1965)

    Article  Google Scholar 

  13. W. Wesch, C.S. Schnohr, Ion Beam Modification of Solids, Chap. 9, ed. (Springer, Switzerland, 2016)

  14. Y. Zhang, W.J. Weber, Ion irradiation and modification: The role of coupled electronic and nuclear energy dissipation and subsequent nonequilibrium processes in materials. Appl. Phys. Rev. 7, 041307 (2020)

    Article  ADS  Google Scholar 

  15. F. Priolo, E. Rimini, Ion-beam-induced epitaxial crystallization and amorphization in silicon. Mater. Sci. Rep. 5, 319–379 (1990)

    Article  Google Scholar 

  16. L. Pelaz, L.A. Marqués, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5958 (2004)

    Article  ADS  Google Scholar 

  17. A. Kamarou, W. Wesch, E. Wendler, A. Undisz, M. Rettenmayr, Radiation damage formation in InP, InSb, GaAs, GaP, Ge, and Si due to fast ions. Phys. Rev. B 78, 054111 (2008)

    Article  ADS  Google Scholar 

  18. P. Allport, Applications of silicon strip and pixel-based particle tracking detectors. Nat. Rev. Phys. 1, 567–576 (2019)

    Article  Google Scholar 

  19. P.K. Sahoo, T. Som, D. Kanjilal, V.N. Kulkarni, Swift heavy ion beam induced recrystallization of amorphous Si layers. NIM B 240, 239–244 (2005)

    Article  ADS  Google Scholar 

  20. L. Thomé, A. Debelle, F. Garrido, P. Trocellier, Y. Serruys, G. Velisa, S. Miro, Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phys. Lett. 102, 141906 (2013)

    Article  ADS  Google Scholar 

  21. L. Thomé, G. Gutierrez, I. Monnet, F. Garrido, A. Debelle, Ionization-induced annealing in silicon upon dual-beam irradiation. J. Mater. Sci. 55, 5938–5947 (2020)

    Article  ADS  Google Scholar 

  22. A. Gentils, C. Cabet, Investigating radiation damage in nuclear energy materials using JANNuS multiple ion beams. Nucl. Instr. Methods B 447, 107–112 (2019)

    Article  ADS  Google Scholar 

  23. J.F Ziegler, J.P Biersack, U. Littmark. The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). https://www.srim.org

  24. E. Holmström, A. Kuronen, K. Nordlund, Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys. Rev. B 78, 045202 (2008)

    Article  ADS  Google Scholar 

  25. L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Modern analysis of ion channeling data by Monte Carlo simulations. Nucl. Instr. Methods B 240, 277–282 (2005)

    Article  ADS  Google Scholar 

  26. M. Souilah, A. Boulle, A. Debelle, RaDMaX: a graphical program for the determination of strain and damage profiles in irradiated crystals. J. Appl. Cryst. 49, 311–316 (2016)

    Article  Google Scholar 

  27. A. Boulle, V. Mergnac, RaDMaX online: a web-based program for the determination of strain and damage profiles in irradiated crystals using X-ray diffraction. J. Appl. Cryst. 53, 587–593 (2020)

    Article  Google Scholar 

  28. A. Debelle, A. Declémy, XRD investigation of the strain/stress state of ion-irradiated crystals. Nucl. Instr. Methods B 268, 1460–1465 (2010)

    Article  ADS  Google Scholar 

  29. P.D. Edmondson, D.J. Riley, R.C. Birtcher, S.E. Donnelly, Amorphization of crystalline Si due to heavy and light ion irradiation. J. Appl. Phys. 106, 043505 (2009)

    Article  ADS  Google Scholar 

  30. A. Debelle, L. Thomé, D. Dompoint, A. Boulle, F. Garrido, J. Jagielski, D. Chaussende, Characterization and modelling of the ion-irradiation induced disorder in 6H-SiC and 3C-SiC single crystals. J. Phys. D: Appl. Phys. 43, 455408 (2010)

    Article  ADS  Google Scholar 

  31. J. Jagielski, L. Thomé, Multi-step damage accumulation in irradiated crystals. Appl. Phys. A 97, 147–155 (2011)

    Article  ADS  Google Scholar 

  32. K. TomicLuketic, M. Karlušic, A. Gajovic, S. Fazinic, J.H. O’Connell, B. Pielic, B. Radatovic, M. Kralj, Investigation of Ion Irradiation Effects in Silicon and Graphite Produced by 23 MeV I. Beam Mater. 14, 1904 (2021)

    Article  Google Scholar 

  33. B. Svenson, J. Linnros, G. Holmén, Ion-beam induced annealing of radiation damage in silicon on sapphire. Nucl. Inst. Methods 209(210), 755–760 (1983)

    Article  Google Scholar 

  34. V.S. Speriosu, B.M. Paine, M.A. Nicolet, H.L. Glass, X-ray rocking curve study of Si-implanted GaAs, Si, and Ge. Appl. Phys. Lett. 40, 604 (1982)

    Article  ADS  Google Scholar 

  35. G. Bai, M.A. Nicolet, Defects production and annealing in self-implanted Si. J. Appl. Phys. 70, 649–655 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the French EMIR-A network for providing irradiation beamtime and we grant the JANNuS-Saclay staff for their efficiency in performing the irradiation experiments. We also thank the JANNuS-SCALP platform staff for their help during the RBS/C measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Debelle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debelle, A., Gutierrez, G., Boulle, A. et al. Disordering kinetics in monocrystalline and epitaxial Si upon energy deposition induced by dual-beam ion irradiation. Appl. Phys. A 127, 771 (2021). https://doi.org/10.1007/s00339-021-04890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04890-2

Keywords

Navigation