Skip to main content
Log in

Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used in high-voltage applications and outdoor electrical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Poly (methyl methacrylate) (PMMA) is a polymeric material widely used in high-voltage applications and outdoor electrical applications. The aging of polymeric insulators is inevitable during their service life. The surface properties of polymeric insulators play an active role in determining and evaluating their service life. Properties such as hydrophobicity and hydrophilicity are some of the methods used in the analysis of surface properties of materials. Within the scope of this study, contact angle measurements were carried out in order to interpretation on the wettability properties (hydrophobicity and hydrophilicity) of PMMA dielectric material, which has an important place in electrical & electronic, and medical applications. Using the designed and implemented contact angle measurement platform, snapshots of the distilled water droplets released onto the PMMA surface were taken at the 0.25, 4, 8, 10, 20, 25, and 30 min for 7 different time points. Images taken from the measurement environment with a digital microscope were processed using basic image processing techniques with the help of a graphical user interface (GUI) developed on the MATLAB platform. As output, contact angle values and contact angle curves depending on time were plotted and the equations were obtained. With the help of contact angles obtained from PMMA surfaces and curves obtained in different models (linear, quadratic, cubic), it will enable correct interpretation of the wettability behavior of the materials and the evaporation. An approach based on contact angle is presented for interpretation on the wettability of PMMA materials. As a result, the correlation between evaporation, time, wettability, and contact angle was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. M. Haque, J. A. A. Rey, A. A. Mas’ud, Y. Umar, R. Albarracin, (2017) In 2017 Properties and Applications of Polymer Dielectrics, InTech. Electrical properties of different polymeric materials and their applications: The influence of electric field, pp. 41–63

  2. Z. Yan, X. Liang, H. Shen, Y. Liu, Preparation and basic properties of superhydrophobic silicone rubber with micro-nano hierarchical structures formed by picosecond laser-ablated template. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1743–1750 (2017)

    Article  Google Scholar 

  3. S.M. Gubanski, A.E. Vlastos, Wettability of naturally aged silicon and EPDM composite insulators. IEEE Trans. Power Deliv. 5(3), 1527–1535 (1990)

    Article  Google Scholar 

  4. A. Ersoy, A. Kuntman, (2008) In 2008 Elektrik–Elektronik–Bilgisayar Mühendisliği Sempozyumu (ELECO2008). Polimerik yalıtkanlarda yüzey özelliklerinin temas açısı ile incelenmesi, pp. 107–111

  5. I. Ahmadi-Joneidi, A.A. Shayegani-Akmal, H. Mohseni, Lifetime prediction of 20 kV field-aged silicone rubber insulators via condition assessment. IEEE Trans. Dielectr. Electr. Insul. 24(6), 3612–3621 (2017)

    Article  Google Scholar 

  6. M. Ali, R. Hackam, Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 15(5), 1368–1378 (2008)

    Article  Google Scholar 

  7. U. Ali, K.J.B.A. Karim, N.A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55(4), 678–705 (2015)

    Article  Google Scholar 

  8. H.S. Park, H.S. Park, M.S. Gong, Preparation of silver/poly (methyl methacrylate) nanocomposites by in-situ radical polymerization using silver carbamate complex. Macromol. Res. 18(9), 897–903 (2010)

    Article  Google Scholar 

  9. S.M. Pawde, K. Deshmukh, Investigation of the structural, thermal, mechanical, and optical properties of poly (methyl methacrylate) and poly (vinylidene fluoride) blends. J. Appl. Polym. Sci. 114(4), 2169–2179 (2009)

    Article  Google Scholar 

  10. S. Rajendran, M. Sivakumar, R. Subadevi, Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 124(1), 225–230 (2003)

    Article  ADS  Google Scholar 

  11. C. Yao, W. Xing, C. Ma, L. Song, Y. Hu, Z. Zhuang, Synthesis of phytic acid-based monomer for UV-Cured coating to improve fire safety of PMMA. Prog. Org. Coat. 140, 105497 (2020)

    Article  Google Scholar 

  12. S.M. Pawde, A.R. Deshmukh Kalim, Studies on surface properties of polymeric coated paper material. J. Appl. Polym. Sci. 101(6), 4167–4171 (2006)

    Article  Google Scholar 

  13. B. Arifvianto, M. Mahardika, P. Dewo, P.T. Iswanto, U.A. Salim, Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L. Mater. Chem. Phys. 125(3), 418–426 (2011)

    Article  Google Scholar 

  14. J. Tam, G. Palumbo, U. Erb, Recent advances in superhydrophobic electrodeposits. Materials. 9(3), 151 (2016)

    Article  ADS  Google Scholar 

  15. L. Li, M. Kim, S. Lee, M. Bae, D. Lee, Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surf. Coat. Technol. 307, 517–524 (2016)

    Article  Google Scholar 

  16. I. Ciftci, H. Gökçe, Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method. J. Fac. Eng. Archit. Gaz. 34(1), 201–213 (2019)

    Google Scholar 

  17. M. Yavuz, H. Gökçe, I. Ciftci, H. Gökçe, Ç. Yavaş, U. Şeker, Investigation of the effects of drill geometry on drilling performance and hole quality. Int. J. Adv. Manuf. Technol. 106(6), 4623–4633 (2020)

    Article  Google Scholar 

  18. S.M. Rowan, M.I. Newton, G. McHale, Evaporation of microdroplets and the wetting of solid surfaces. J. Phys. Chem. 99(35), 13268–13271 (1995)

    Article  Google Scholar 

  19. H.Y. Erbil, G. McHale, S.M. Rowan, M.I. Newton, Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15(21), 7378–7385 (1999)

    Article  Google Scholar 

  20. S.M. Rowan, M.I. Newton, F.W. Driewer, G. McHale, Evaporation of microdroplets of azeotropic liquids. J. Phys. Chem. B. 104, 8217–8220 (2000)

    Article  Google Scholar 

  21. Z. Wang, X.F. Peng, A.S. Mujumdar, A. Su, D.J. Lee, Evaporation of ethanol-water mixture drop on horizontal substrate. Dry. Technol. 26(6), 806–810 (2008)

    Article  Google Scholar 

  22. X. Zhong, J. Ren, F. Duan, Wettability effect on evaporation dynamics and crystalline patterns of sessile saline droplets. J. Phys. Chem. B. 121(33), 7924–7933 (2017)

    Article  Google Scholar 

  23. H. Almohammadi, A. Amirfazli, Sessile drop evaporation under an electric field. Colloids Surf. A. Physicochem. Eng. Asp. 555, 580–585 (2018)

    Article  Google Scholar 

  24. K. Y. Law, H. Zhao, (2016) Surface wetting: characterization, contact angle, and Fundamentals Springer, Switzerland

  25. H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surf. Coat. Technol. 292, 72–77 (2016)

    Article  Google Scholar 

  26. A.W. Neumann, R.J. Good, Techniques of Measuring Contact Angles, Surface and Colloid Science (Springer, Boston, MA, 1979), pp. 31–91

    Google Scholar 

  27. D.L. Williams, A.T. Kuhn, M.A. Amann, M.B. Hausinger, M.M. Konarik, E.I. Nesselrode, Computerised measurement of contact angles. Galvanotechnik 101(11), 2502 (2010)

    Google Scholar 

  28. A. Skłodowska, M. Woźniak, R. Matlakowska, The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals. Biol. Proced. Online 1(3), 114–121 (1999)

    Article  Google Scholar 

  29. V.A. Lubarda, K.A. Talke, Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27(17), 10705–10713 (2011)

    Article  Google Scholar 

  30. A. Kalantarian, R. David, A.W. Neumann, Methodology for high accuracy contact angle measurement. Langmuir 25(24), 14146–14154 (2009)

    Article  Google Scholar 

  31. A.F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364(1–3), 72–81 (2010)

    Article  Google Scholar 

  32. A. Bateni, S.S. Susnar, A. Amirfazli, A.W. Neumann, A high-accuracy polynomial fitting approach to determine contact angles. Colloids Surf. A Physicochem. Eng. Asp. 219(1–3), 215–231 (2003)

    Article  Google Scholar 

  33. A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A Physicochem. Eng. Asp. 286(1–3), 92–103 (2006)

    Article  Google Scholar 

  34. T. Young III., An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    ADS  Google Scholar 

  35. H. Hu, R.G. Larson, Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B. 106(6), 1334–1344 (2002)

    Article  Google Scholar 

  36. K.S. Birdi, D.T. Vu, A. Winter, A study of the evaporation rates of small water drops placed on a solid surface. J. Phys. Chem. 93(9), 3702–3703 (1989)

    Article  Google Scholar 

  37. M.E. Schrader, G.H. Weiss, Free energy and vapor pressure of sessile drops. 1. Rapidly established contact angle equilibrium. J. Phys. Chem. 91(2), 353–356 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karhan, M. Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used in high-voltage applications and outdoor electrical applications. Appl. Phys. A 127, 462 (2021). https://doi.org/10.1007/s00339-021-04630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04630-6

Keywords

Navigation