Skip to main content
Log in

Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study presents the surface modification of β-titanium alloy by the electrical discharge chemical treatment (EDCT) to achieve a corrosion-resistant surface. This technique incorporated multi-walled carbon nanotubes (MWCNTs) in the dielectric medium to alter the surface properties of the substrate. Herein, the MWCNTs act as potential candidates due to its chemical inertness and physical as well as electrical properties for achieving desired surface properties. For the sake of comparison, the μ-hydroxyapatite (μHAp) powder was also utilized in the dielectric medium. Surface morphology, topography, and elemental composition of the treated surfaces were investigated by FE-SEM, EDS, and XRD techniques, respectively. The electrochemical potentiodynamic test was carried out to investigate the corrosion resistance of untreated and treated surfaces. The treated surfaces were also evaluated in terms of change in surface morphology, wettability, and surface free energy. The outcome revealed that the alloy treated with MWCNTs favors the synthesis of the chemically stable corrosion-resistant surface. The existence of TiO2, ZrO2, Nb2O5, TaO, ZrO2, TiC2, and NbC phases detected from XRD examination affirmed that the corrosion resistance of the substrate is significantly affected by multi-walled carbon nanotube deposition. The MWCNT-treated surface presented the improved wettability and surface free energy which are twofold higher than the untreated surface.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Singh, H. Singh, B.S. Sidhu, Appl. Surf. Sci. 284, 811 (2013)

    ADS  Google Scholar 

  2. W.P. Freire, M.V.L. Fook, E.F. Barbosa, C.S. dos Araújo, R.C. Barbosa, I.M. Pinheiro, Mater Sci Forum 805, 19 (2015)

    Google Scholar 

  3. L.S. Kubie, G.M. Shults, J. Exp. Med. 42, 565 (1925)

    Google Scholar 

  4. G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Recent Pat. Corros. Sci. 2, 40 (2010)

    Google Scholar 

  5. G.T. Burstein, P.C. Pistorius, Corrosion 51, 380 (1995)

    Google Scholar 

  6. K. Avsec, M. Jenko, M. Conradi, A. Kocijan, A. Vesel, J. Kovač, M. Godec, I. Belič, B. Šetina-Batič, C. Donik, M. Gorenšek, Coatings 9, 868 (2019)

    Google Scholar 

  7. F. Rupp, L. Scheideler, N. Olshanska, M. De Wild, M. Wieland, J. Geis-Gerstorfer, J. Biomed. Mater. Res. A 76, 323 (2016)

    Google Scholar 

  8. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, J. Mech, Behav. Biomed. Mater. 77, 90 (2018)

    Google Scholar 

  9. B. Kasemo, J. Prosthet. Dent. 49, 832 (1983)

    Google Scholar 

  10. K.R. Rakesh, S. Bontha, M.R. Ramesh, M. Das, V.K. Balla, Appl. Surf. Sci 480, 70 (2019)

    ADS  Google Scholar 

  11. G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, J. Biomed. Mater. Res. A 74, 49 (2005)

    Google Scholar 

  12. G. Wang, S. Moya, Z. Lu, D. Gregurec, H. Zreiqat, Nanomedicine 10, 1327 (2015)

    Google Scholar 

  13. K. Das, A. Bandyopadhyay, S. Bose, J. Am. Ceram. Soc. 91, 2808 (2008)

    Google Scholar 

  14. S. Tamilselvi, V. Raman, N. Rajendran, Electrochim. Acta 52, 839 (2006)

    Google Scholar 

  15. I. Gurappa, Mater. Charact. 49, 73 (2002)

    Google Scholar 

  16. B. Sivakumar, S. Kumar, T.S. Narayanan, Wear 270, 317 (2011)

    Google Scholar 

  17. M. Lewandowska, A. Roguska, M. Pisarek, B. Polak, M. Janik-Czachor, K.J. Kurzydłowski, Biomol. Eng. 24, 438 (2007)

    Google Scholar 

  18. B. Sivakumar, R. Singh, L.C. Pathak, Mat. Sci. Eng. C 48, 243 (2015)

    Google Scholar 

  19. X. Nie, A. Leyland, A. Matthews, Surf. Coat. Tech. 125, 407 (2000)

    Google Scholar 

  20. Y. Usui, K. Aoki, N. Narita, N. Murakami, I. Nakamura, K. Nakamura, N. Ishigaki, H. Yamazaki, H. Horiuchi, H. Kato, S. Taruta, SMALL 4, 240 (2008)

    Google Scholar 

  21. T. Sun, G. Wang, H. Liu, L. Feng, L. Jiang, D. Zhu, J. Am. Ceram. Soc. 125, 14996 (2003)

    Google Scholar 

  22. X. Dai, X. Huang, F. Yang, X. Li, J. Sightler, Y. Yang, C. Li, Appl. Phys. Lett. 102, 161605 (2013)

    ADS  Google Scholar 

  23. S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Int. J. Nanomed. 7, 5361 (2012)

    Google Scholar 

  24. E.D. Yildirim, Y. Xin, K. Nair, W. Sun, J. Biomed. Mater. Res. B 87, 406 (2008)

    Google Scholar 

  25. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi, Surf. Coat. Tech. 191, 351 (2005)

    Google Scholar 

  26. Z. Yang, H. Xu, Y.L. Shi, M.K. Li, Y. Huang, H.L. Li, Mater. Res. Bull. 40, 1001 (2005)

    Google Scholar 

  27. B.M. Praveen, T.V. Venkatesha, Y.A. Naik, K. Prashantha, Surf. Coat. Tech. 201, 5836 (2007)

    Google Scholar 

  28. M. Terada, S. Abe, T. Akasaka, M. Uo, Y. Kitagawa, F. Watari, Biomed Mater Eng 19, 45 (2009)

    Google Scholar 

  29. A. Mahajan, S.S. Sidhu, J. Mater. Res. 34, 2837 (2019)

    ADS  Google Scholar 

  30. S.S. Sidhu, A. Batish, K. Kumar, Mater. Manuf. Process. 29, 46 (2014)

    Google Scholar 

  31. L. Li, L. Zhao, Z.Y. Li, L. Feng, X. Bai, Mater. Manuf. Process. 32, 83 (2017)

    Google Scholar 

  32. N. Zaveri, G.D. McEwen, R. Karpagavalli, A. Zhou, J. Nanoparticle Res. 12, 1609 (2010)

    ADS  Google Scholar 

  33. A.M. Abdul-Rani, A.M. Nanimina, T.L. Ginta, Key. Eng. Mater. 724, 61 (2017)

    Google Scholar 

  34. T.T. Opoz, H. Yasar, M.F. Murphy, N. Ekmekci, B. Ekmekci, Int. J. Adv. Eng. Pure Sci. 31, 1 (2019)

    Google Scholar 

  35. S. Devgan, S.S. Sidhu, Mater. Chem. Phys. 239, 122005 (2020)

    Google Scholar 

  36. P.V. Ramarao, M.A. Faruqi, Precis. Eng. 4, 111 (1982)

    Google Scholar 

  37. H.K. Kansal, S. Singh, P. Kumar, J. Mater. Process. Tech. 169, 427 (2005)

    Google Scholar 

  38. T. Pratap, K. Patra, Surf. Coat. Tech. 349, 71 (2018)

    Google Scholar 

  39. R. Junker, A. Dimakis, M. Thoneick, J.A. Jansen, Clin Oral Implants Res. 20, 185 (2009)

    Google Scholar 

  40. A.F. Azevedo, E.J. Corat, N.G. Ferreira, V.J. Trava-Airoldi, Surf. Coat. Tech. 194, 271 (2005)

    Google Scholar 

  41. D.G. Waugh, C. Toccaceli, A.R. Gillett, C.H. Ng, S.D. Hodgson, J. Lawrence, Rev. Adhes. Adhes. 4, 69 (2016)

    Google Scholar 

  42. D.K. Owens, R.C. Wendt, J. Appl. Polym. 13, 1741 (1969)

    Google Scholar 

  43. A. Escudeiro, T. Polcar, A. Cavaleiro, J. Mech. Behav. Biomed. Mater. 39, 316 (2014)

    Google Scholar 

  44. A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Acta Biomater. 6, 2711 (2010)

    Google Scholar 

  45. C.W. Chan, S. Lee, G. Smith, G. Sarri, C.H. Ng, A. Sharba, H.C. Man, Appl. Surf. Sci 367, 80 (2016)

    ADS  Google Scholar 

  46. D. Raducanu, E. Vasilescu, V.D. Cojocaru, I. Cinca, P. Drob, C. Vasilescu, S.I. Drob, J Mech Behav Biomed Mater 4, 1421 (2011)

    Google Scholar 

  47. J. Izquierdo, G. Bolat, N. Cimpoesu, L.C. Trinca, D. Mareci, R.M. Souto, Appl. Surf. Sci 385, 368 (2016)

    ADS  Google Scholar 

  48. S.D. Puckett, P.P. Lee, D.M. Ciombor, R.K. Aaron, T.J. Webster, Acta Biomater. 6, 2352 (2010)

    Google Scholar 

  49. C.C. Chen, C.F. Chen, I.H. Lee, C.L. Lin, Diam. Relat. Mater. 14, 1897 (2005)

    ADS  Google Scholar 

  50. F.C. Cowlard, J.C. Lewis, J. Mater. Sci. 2, 507 (1967)

    ADS  Google Scholar 

  51. D. Krupa, J. Baszkiewicz, J. Kozubowski, A. Barcz, J. Sobczak, A. Biliński, B. Rajchel, Vacuum 63, 715 (2001)

    Google Scholar 

  52. D. Krupa, J. Baszkiewicz, J.W. Sobczak, A. Biliński, A. Barcz, J. Mater. Process. Tech. 143, 158 (2003)

    Google Scholar 

  53. M. Jenko, M. Gorensek, M. Godec, M. Hodnik, B.S. Batic, C. Donik, D. Dolinar, Appl. Surf. Sci. 427, 584 (2018)

    ADS  Google Scholar 

  54. B.M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 37, 709 (1995)

    Google Scholar 

  55. D.J. Blackwood, A.W.C. Chua, K.H.W. Seah, R. Thampuran, S.H. Teoh, Corros. Sci 42, 481 (2000)

    Google Scholar 

  56. A. OrjuelaG, R. Rincón, J.J. Olaya, Surf. Coat. Tech. 259, 667 (2014)

    Google Scholar 

  57. X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci 145, 80 (2018)

    Google Scholar 

  58. J. Pan, D. Thierry, C. Leygraf, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41, 1143 (1996)

    Google Scholar 

Download references

Acknowledgements

The authors thank IKG Punjab Technical University, Kapurthala for its support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Devgan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devgan, S., Sidhu, S.S. Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl. Phys. A 126, 211 (2020). https://doi.org/10.1007/s00339-020-3391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3391-1

Keywords

Navigation