Skip to main content
Log in

Crystal structure and magnetic properties study on barium hexaferrite of different average crystallite size

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium hexaferrite (BHF) is a promising material for technological applications. Hence, the large production of BHF for industrial application needs attention. Therefore, the effect of annealing temperature on the crystal structure, morphology, and magnetic properties of barium hexaferrite has been explored in this article. The BaFe12O19 (BHF) was prepared by the sol–gel method and annealed at different temperatures (800 °C, 900 °C, 1000 °C, and 1100 °C). The crystal structure of BHF is investigated by the Rietveld refinement of XRD patterns using Fullprof suit software. Bond lengths and bond angles have been calculated using the Rietveld refined crystal structure parameters. The FESEM micrograph reveals the cylindrical shape of BHF particles for the samples annealed above 900 °C. Large average grain size has been observed for 1100 °C annealed BHF sample. The average crystallite size (obtained from XRD analysis) and particle size (obtained from FESEM) increase with an increase in annealing temperature of BHF. It is observed that the magnetic properties of BHF depend on bond angles and bond lengths between Fe and O atoms at different crystallographic sites. The saturation magnetization and coercivity are found to increase with the increase in average crystallite or particle size, but the variation is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin dependent tunneling magnetic nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  ADS  Google Scholar 

  2. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, High spin dependent tunneling magnetoresistance in magnetic powders made by arc-discharge. J. Appl. Phys. 120, 123905 (2016). https://doi.org/10.1063/1.4963293

    Article  ADS  Google Scholar 

  3. Y. Wang, L.T. Tseng, P.P. Murmu, N. Bao, J. Kennedy, M. Lonesc, J. Ding, K. Suzuki, S. Li, J. Yi, Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater. Des. 121, 7784 (2017). https://doi.org/10.1016/j.matdes.2017.02.037

    Article  Google Scholar 

  4. P. Couture, G.V.M. Williams, J. Kennedy, J. Leveneur, P.P. Murmu, S.V. Chong, S. Rubanov, J. Alloy Compd. 695, 3061–3068 (2017). https://doi.org/10.1016/j.jallcom.2016.11.344

    Article  Google Scholar 

  5. M. Peters, White Paper: The technical and operational values of Barium ferrite tape media, 2014. https://asset.fujifilm.com/www/us/files/2020-06/40e105f61cdbbe5b0812c542438d88b2/White_Paper_Technical_Operational_Values_BF.pdf

  6. R. Alderson, S. Taylor, The role of barium ferrite technology in data storage, https://www.pmddatasolutions.com/admin/resources/the-role-of-barium-ferrite-in-data-storage.pdf

  7. V. Singh, G. Kumar, P. Dhiman, R. Kotnala, J. Shah, K.M. Batoo, M. Singh, Structural, dielectric and magnetic properties of nanocrystalline BaFe12O19 hexaferrite processed vis sol-gel technique. Adv. Mat. Lett. 5(8), 447 (2014)

    Article  Google Scholar 

  8. S. Vadivelan, N. Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation methods. Results Phys. 6, 843–850 (2016)

    Article  ADS  Google Scholar 

  9. R. Pullar, Hexagonal ferrites: a review of synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  10. M. Waqar, M.A. Rafiq, T.A. Mirza, F.A. Khalid, A. Khaliq, M.S. Anwar, M. Saleem, Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A 124, 286 (2018). https://doi.org/10.1007/s00339-018-1717-z

    Article  ADS  Google Scholar 

  11. K. Habanjar, H. Shehabi, A.M. Abdallah, Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles. Appl. Phys. A 126, 402 (2020). https://doi.org/10.1007/s00339-020-03497-3

    Article  ADS  Google Scholar 

  12. S. Kumar, S. Supriya, L.K. Pradhan, R. Pandey, M. Kar, Grain size effect on magnetic and dielectric properties of barium hexaferrite (BHF). Phys. B 579, 411908 (2020)

    Article  Google Scholar 

  13. T. Kaur, S. Kumar, B.H. Bhat, Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119, 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

    Article  ADS  Google Scholar 

  14. S. Kumar, M.K. Manglam, S. Supriya, H.K. Satyapal, R.K. Singh, M. Kar, Lattice strain mediated dielectric and magnetic properties in La doped barium hexafeerite. J. Magn. Magn. Mater. 473, 312–319 (2018). https://doi.org/10.1016/j.jmmm.2018.10.085

    Article  ADS  Google Scholar 

  15. X. Zhang, Y. Zhang, Z. Yue, J. Zhang, Influence of sintering atmosphere on the magnetic and electrical properties of barium hexaferrite. AIP Adv. 9, 085129 (2019)

    Article  ADS  Google Scholar 

  16. S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite. J. Magn. Magn Mater. 458, 30–38 (2018)

    Article  ADS  Google Scholar 

  17. S. Kumar, S. Supriya, M. Kar, Multiple electrical phase transition in Al substituted barium hexaferrite. J. Appl. Phys. 122, 224106 (2017)

    Article  ADS  Google Scholar 

  18. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, O. Prakash, D. Kumar, Investigation of crystal structure, microstructure and low temperature magnetic behavior of Ce4+ and Zn2+ Co-doped barium hexaferrite (BaFe12O19). RSC Adv. 8, 19600 (2018)

    Article  ADS  Google Scholar 

  19. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.O. Truchenko, I.S. Kazakevich, M.M. Salem, Feature of crystal structure and magnetic properties of M-type Ba-hexaferritees with diamagnetic substitution. Int. J. Mater. Chem. Phys. 3, 286–294 (2015)

    Google Scholar 

  20. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystallite cobalt ferrite. Intr. Nano Lett. 3, 8 (2013)

    Article  ADS  Google Scholar 

  21. J.A. Gomes, M.H. Sousa, F.A. Tournbo, J.M. Filho, R. Itri, J. Depeyrot, Ritveld structure refinement of the cation distribution in ferrite fine particles studied by X-ray powder diffraction. J. Magn. Magn. Mater. 289, 184–187 (2005)

    Article  ADS  Google Scholar 

  22. M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystal. 38, 772–779 (2005)

    Article  Google Scholar 

  23. P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24, 045028 (2015)

    Article  ADS  Google Scholar 

  24. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticle. Cerm. Int. 40, 7279 (2014)

    Article  Google Scholar 

  25. M.K. Manglam, S. Kumari, L.K. Pradhan, S. Kumar, M. Kar, Lattice strain caused magnetism and magnetocrystalline anisotropy of Zn modified barium hexaferrite. Phys. B 588, 412200 (2020)

    Article  Google Scholar 

  26. S. Kanagesan, M. Hasim, T. Kalaivani, I. Ismail, N. Rodziah, I.R. Ibrahim, N.A. Rahman, sintering temperature dependent of optimized microstructure formation of BaFe12O19 using sol–gel methods. J. Mater. Sci. :Mater. Electron. 26, 1363 (2015)

    Google Scholar 

  27. A. Lawindy, S.A. Mansour, M. Hafiz, H.H. Hassan, A. Ali, Influence of mole ratio, sintering conditions and particle size on the magnetic properties of BaFe12O19 synthesized by ceramic method. Int. J. Appl. Cerm. Tech. 7(6), 868–873 (2010)

    Article  Google Scholar 

  28. J. Gumaste, H.S. Ray, M.M. Godkhindi, P.G. Mukunda, Magnetic properties of topochemically sintered barium hexaferrite. J. Am. Cerm. Soc. 82(11), 3269–3271 (1999)

    Article  Google Scholar 

  29. S. Anjum, F. Sahar, Z. Mustafa, M.S. Aswan, Enhancement of structural and magnetic properties of M-type hexfaerrite permanent magnet based on synthesis temperature. Appl. Phys. A 12, 49 (2018)

    Article  ADS  Google Scholar 

  30. J.N. Dahal, D. Neupane, T.P. Podel, Synthesis and magnetic properties of 4:1 hard–soft SrFe12O19-La1-x Srx MnO3 nanocomposites prepared by auto combustion method. AIP Adv. 9, 075308 (2019)

    Article  ADS  Google Scholar 

  31. S. Carbonin, F. Matignago, G. Menegazzo, A. Nergo, X-ray single crystal study of spinel: in situ heating. Phys. Chem. Miner. 29, 503–514 (2002)

    Article  ADS  Google Scholar 

  32. L.B. Mccusker, R.B.V. Dreek, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guideline. J. Appl. Cryst. 32, 36–50 (1999)

    Article  Google Scholar 

  33. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 323, 251–256 (2005)

    Google Scholar 

  34. M. Bhagwat, A.V. Ramaswamy, A.K. Tyagi, V. Ramaswamy, Rietveld refinement study of nanocrystalline copper doped zirconia. Mater. Res. Bull. 38, 1713–1724 (2003)

    Article  Google Scholar 

  35. N.G. Jovic, A.S. Masadeh, A.S. Kremenpvic, B.V. Antic, J.L. Blanusa, N.D. Cvjeticanin, G.F. Goya, M.V. Antisari, E.S. Bozin, Effect of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles. J. Phys. Chem. C 113, 20559–20567 (2009)

    Article  Google Scholar 

  36. S. Kumari, L. Pradhan, L. Kumar, M.K. Magnlam, M. Kar, Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers. Mater. Res. Express 6, 120a3 (2019)

    Google Scholar 

  37. R. Kumar, R.K. Singh, M.K. Zope, M. Kar, Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite. Mater. Sci. Eng. B 220, 73 (2017)

    Article  Google Scholar 

  38. A. Baykal, Magnetic and optical properties of Zn2+ ion substituted Barium hexaferrite. J. Magn. Magn. Mater. 430, 29–35 (2017)

    Article  ADS  Google Scholar 

  39. Y. Xu, Theory of the single ion magnetocrystalline anisotropy of 3d ion. Phys. Status Solidi B 157, 685 (1990)

    Article  ADS  Google Scholar 

  40. E. Coronado, B.S. Tsukerblat, R. Georgws, Exchange Interactions I: Mechanisms NATO ASI Series (Series E: Applied Sciences). (Springer, Berlin, 1996), p. 321

    Google Scholar 

  41. E.F. Kneller, R. Hawig, The exchange—spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 24, 3560–3588 (1991)

    Google Scholar 

  42. T.B. Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, Effect of non-magnetic and magnetic trivalent ion substitution on BAM: ferrite properties synthesis by hydrothermal method. J. Alloy Comp. 671, 245–253 (2016)

    Article  Google Scholar 

  43. H. Nikmanesh, M. Moradi, P. Kameli, G.H. Bordbar, Effect of annealing temperature on exchange spring behavior of barium hexaferrite/nickel zinc ferrite nanocomposites. J. Electron. Mater. 46, 5933–5941 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manglam, M.K., Kumari, S., Mallick, J. et al. Crystal structure and magnetic properties study on barium hexaferrite of different average crystallite size. Appl. Phys. A 127, 138 (2021). https://doi.org/10.1007/s00339-020-04232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04232-8

Keywords

Navigation