Skip to main content
Log in

Thermally influenced, optical and fluorescence properties of Zinc Oxide nanoparticles for glutathione sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glutathione, a non-protein thiol molecule is present in abundance in the human body. It plays a major role in maintaining the intracellular redox states, metabolism and detoxification. A novel idea is introduced where zinc oxide nanoparticles are used for the fluorescence sensing of Glutathione. Zinc oxide nanoparticles prepared by the co-precipitation method has been annealed at 400 °C, 700 °C and 900 °C. XRD studies confirmed the evolution of phase and hexagonal wurtzite structure. FESEM images confirm the high degree of crystallinity. Optical absorption measurements exhibit a red shift in absorption for unannealed, 400 °C and 700 °C and a decrease in absorption wavelength for particle annealed at 900 °C. In addition, the bandgap energy decreases with an increase in annealing temperature indicating the increase in particle size. Photoluminescence studies in room temperature at an excitation of 330 nm show emission in the UV and visible regions. Quenching of fluorescence emission intensity due to electron transfer is noticed while increasing the concentration of Glutathione in nanomolar(nM) range. Quenching of PL intensity due to adsorption-induced electron transfer is explained through band bending effect. These results indicate that zinc oxide nanoparticles can be implemented for optoelectronics, solar photocatalysts and glutathione sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Das, S. Mukhopadhyay, S. Chatterjee, P.S. Devi, G. Suresh Kumar, ACS Omega 3, 7494 (2018)

    Article  Google Scholar 

  2. X. Zhang, Z. Guo, X. Zhang, L. Gong, X. Dong, Y. Fu, Q. Wang, Z. Gu, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  3. F.W. Pratiwi, C.W. Kuo, B.C. Chen, P. Chen, Nanomedicine 14, 1759 (2019)

    Article  Google Scholar 

  4. W. Chen, C.A. Glackin, M.A. Horwitz, J.I. Zink, Acc. Chem. Res. 52, 1531 (2019)

    Article  Google Scholar 

  5. X. Ma, S. He, B. Qiu, F. Luo, L. Guo, Z. Lin, ACS Sens. 4, 782 (2019)

    Article  Google Scholar 

  6. M. Pastucha, Z. Farka, K. Lacina, Z. Mikušová, P. Skládal, Microchim. Acta 186, 312 (2019)

    Article  Google Scholar 

  7. D. Liu, B. Li, G. Li, L. Wang, X. Yang, Mater. Lett. 196, 37 (2017)

    Article  Google Scholar 

  8. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)

    Article  Google Scholar 

  9. N. Gogurla, S.C. Kundu, S.K. Ray, Nanotechnology 28, 145202 (2017)

    Article  ADS  Google Scholar 

  10. A. Raja, S. Ashokkumar, R. Pavithra Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R. Ganapathi Raman, M. Swaminathan, J. Photochem. Photobiol. B Biol. 181, 53 (2018)

    Article  Google Scholar 

  11. W. Li, Y.J. Guo, Q.B. Tang, X.T. Zu, J.Y. Ma, L. Wang, K. Tao, H. Torun, Y.Q. Fu, Surf. Coat. Technol. 363, 419 (2019)

    Article  Google Scholar 

  12. X. Zeng, W. Liu, L. Zhang, Z. Wang, S. Li, F. Zhang, T. Wang, Y. Liao, Proceedings of 2019 5th International Conference on Electric Power Equipment—Switching Technology Front. Switch. Technol. a Futur. Sustain. Power Syst. ICEPE-ST 2019 339 (2019).

  13. B. Sun, X. Li, R. Zhao, H. Ji, J. Qiu, N. Zhang, D. He, C. Wang, J. Mater. Sci. 54, 2754 (2019)

    Article  ADS  Google Scholar 

  14. K. Kaviyarasu, G.T. Mola, S.O. Oseni, K. Kanimozhi, C.M. Magdalane, J. Kennedy, M. Maaza, J. Mater. Sci. Mater. Electron. 30, 147 (2019)

    Article  Google Scholar 

  15. G.D. Patil, A.H. Patil, S.A. Jadhav, C.R. Patil, P.S. Patil, Mater. Lett. 255, 126562 (2019)

    Article  Google Scholar 

  16. A. Bhogale, N. Patel, J. Mariam, P.M. Dongre, A. Miotello, D.C. Kothari, A.I.P. Conf, Proc. 1512, 130 (2013)

    Google Scholar 

  17. J.I. Hahm, J. Nanosci. Nanotechnol. 14, 475 (2014)

    Article  Google Scholar 

  18. K. Aoyama, T. Nakaki, Molecules 20, 8742 (2015)

    Article  Google Scholar 

  19. Q. Jin, Y. Li, J. Huo, X. Zhao, Sens. Actuators B Chem. 227, 108 (2016)

    Article  Google Scholar 

  20. P. Ni, D. Jiang, C. Chen, Y. Jiang, Y. Lu, Z. Zhao, Analyst 143, 4442 (2018)

    Article  ADS  Google Scholar 

  21. L.Y. Niu, M.Y. Jia, P.Z. Chen, Y.Z. Chen, Y. Zhang, L.Z. Wu, C.F. Duan, C.H. Tung, Y.F. Guan, L. Feng, Q.Z. Yang, RSC Adv. 5, 13042 (2015)

    Article  Google Scholar 

  22. L. Li, Q. Wang, Z. Chen, Microchim. Acta 186, 0 (2019).

  23. X. Sun, P. Heinrich, R.S. Berger, P.J. Oefner, K. Dettmer, Anal. Chim. Acta 1080, 127 (2019)

    Article  Google Scholar 

  24. M. Hanko, Ľ. Švorc, A. Planková, P. Mikuš, Anal. Chim. Acta 1062, 1 (2019)

    Article  Google Scholar 

  25. A.A. Ensafi, T. Khayamian, F. Hasanpour, J. Pharm. Biomed. Anal. 48, 140 (2008)

    Article  Google Scholar 

  26. Z. Abolghasemi-Fakhri, M. Amjadi, J.L. Manzoori, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 216, 85 (2019)

    Article  ADS  Google Scholar 

  27. Z. Amouzegar, A. Afkhami, T. Madrakian, Microchim. Acta 186, (2019).

  28. P. Hou, J. Sun, H. Wang, L. Liu, L. Zou, S. Chen, Sens. Actuators B Chem. 304, 127244 (2020)

    Article  Google Scholar 

  29. W. Dong, R. Wang, X. Gong, C. Dong, Anal. Bioanal. Chem. 411, 6687 (2019)

    Article  Google Scholar 

  30. P. Nedeljko, M. Turel, A. Lobnik, J. Sensors 2018, (2018).

  31. H.B. Wang, Y. Chen, Y. Li, Y.M. Liu, RSC Adv. 6, 79526 (2016)

    Article  Google Scholar 

  32. J. Ungula, B.F. Dejene, H.C. Swart, Results Phys. 7, 2022 (2017)

    Article  ADS  Google Scholar 

  33. D. Raoufi, J. Lumin. 134, 213 (2013)

    Article  Google Scholar 

  34. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int Nano Lett 3, 301 (2014)

    Google Scholar 

  35. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, G. Borodi, Ceram. Int. 44, 10478 (2018)

    Article  Google Scholar 

  36. T. Dippong, E.A. Levei, O. Cadar, F. Goga, D. Toloman, G. Borodi, J. Therm. Anal. Calorim. 136, 1587 (2019)

    Article  Google Scholar 

  37. T. Dippong, E.A. Levei, O. Cadar, I.G. Deac, L. Diamandescu, L. Barbu-Tudoran, J. Alloys Compd. 786, 330 (2019)

    Article  Google Scholar 

  38. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  39. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 2 (2012)

    Article  Google Scholar 

  40. P. Triloki, R. Rai Garg, B.K. Singh, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 736, 128 (2014)

    Article  ADS  Google Scholar 

  41. N. Chaithanatkun, K. Onlaor, B. Tunhoo, Key Eng. Mater. 728, 215 (2017)

    Article  Google Scholar 

  42. D. Verma, A.K. Kole, P. Kumbhakar, J. Alloys Compd. 625, 122 (2015)

    Article  Google Scholar 

  43. T. Dippong, D. Toloman, E.A. Levei, O. Cadar, A. Mesaros, Thermochim. Acta 666, 103 (2018)

    Article  Google Scholar 

  44. M. Ghosh, A.K. Raychaudhuri, Nanotechnology 19, 445704 (2008)

    Article  ADS  Google Scholar 

  45. N. Goswami, D.K. Sharma, Phys. E Low-Dimension. Syst. Nanostruct. 42, 1675 (2010)

    Article  ADS  Google Scholar 

  46. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, J. Appl. Phys. 102, 063524 (2007)

    Article  ADS  Google Scholar 

  47. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Mater. Lett. 101, 57 (2013)

    Article  Google Scholar 

  48. R. Joseph, Z. Lakowic, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, US, 2006)

    Google Scholar 

  49. Z. Zhang, J.T. Yates, J. Phys. Chem. Lett. 1, 2185 (2010)

    Article  Google Scholar 

  50. Z. Zhang, J.T. Yates, Chem. Rev. 112, 5520 (2012)

    Article  Google Scholar 

  51. Y. Qiu, J. Huang, L. Jia, Int. J. Anal. Chem. 2018, 1979684 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Balasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, J., Balasubramanian, K. Thermally influenced, optical and fluorescence properties of Zinc Oxide nanoparticles for glutathione sensing. Appl. Phys. A 126, 602 (2020). https://doi.org/10.1007/s00339-020-03780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03780-3

Keywords

Navigation