Skip to main content
Log in

Competitive Nucleation and Growth Between the Primary and Peritectic Phases of Rapidly Solidifying Ni–Zr Hypoperitectic Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Ni-16 at. pct Zr hypoperitectic alloy melt was substantially undercooled using an electromagnetic levitator and a drop tube. The undercooling-induced competitive growth between the primary Ni7Zr2 and peritectic Ni5Zr phases was revealed by observing of the recalescence process in situ and confirmed by analyzing the solidified microstructures, X-ray diffraction pattern as well as dendritic growth velocity. When the liquid undercooling is less than a critical value of 106 K, the primary Ni7Zr2 phase initially precipitates from the parent liquid, which is subsequently followed by the nucleation and growth of the peritectic Ni5Zr phase around it. The solidified microstructure consists of the Ni7Zr2 phase, the Ni5Zr phase, and inter-dendritic eutectics. The orientation relationship and interface characteristics of the Ni7Zr2 and Ni5Zr phases were investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The EBSD results clearly demonstrate that the Ni7Zr2 and Ni5Zr phases have the parallel relationship of {111}Ni7Zr2 // {111}Ni5Zr. TEM analysis reveals that a large-scale flat interface exists between the Ni7Zr2 and Ni5Zr phases, indicating good lattice matching of the two phases along the phase boundary. Once the critical undercooling is exceeded, the peritectic Ni5Zr phase preferentially nucleates and grows from the undercooled melt by completely suppressing the formation of the primary Ni7Zr2 phase. The EBSD analysis shows that the peritectic Ni5Zr phase is highly orientated and its growth mode is almost parallel to the 〈110〉 directions. When containerlessly solidified during free fall, typical peritectic microstructures form in large droplets, while only peritectic phase appears in the small droplets. This result further confirms the strong competition between the primary and peritectic phases in the Ni–Zr hypoperitectic alloy induced by large undercoolings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Tourret, G. Reinhart, Ch.-A. Gandin, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, C.M. Bao, Acta Mater., 2011, vol. 159, pp. 6658-6669.

    Article  Google Scholar 

  2. I. Sohn, R. Dippenaar, Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083-2094.

    Article  Google Scholar 

  3. O. Riosa, D.M. Cupidb, H.J. Seifert and F. Ebrahimia, Acta Mater., 2009, vol 57, pp. 6243-6250.

    Article  Google Scholar 

  4. J.V.J. Congreve, Y.H. Shi, A.R. Dennis, J.H. Durrell, D.A. Cardwell, J. Am. Ceram. Soc., 2016, vol. 99, pp. 3111-3119.

    Article  Google Scholar 

  5. L. Yang, Z.N. Zhou, J.R. Qian, X. Ge, J. Li, Q.D. Hu, J.G. Li, Metall. Mater. Trans. A, 2017, vol. 48, pp. 4229-4236.

    Article  Google Scholar 

  6. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science, 2017, vol. 357, pp. 1029-1032.

    Article  Google Scholar 

  7. P. Lü, H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 22641.

    Article  Google Scholar 

  8. C. Tang, P. Harrowell, Nat. Mater., 2013, vol. 12, pp. 507-511.

    Article  Google Scholar 

  9. D. H. St. Jonh, Acta Metall., 1990, vol. 38, pp. 631-636.

    Article  Google Scholar 

  10. D. H. St. John, L. M. Hogan, Acta Metall., 1987, vol. 35, pp. 171-174.

    Article  Google Scholar 

  11. S. Griesser, M. Reid, C. Bernhard, R. Dippenaar, Acta Mater., 2014, vol. 67, pp. 335-341.

    Article  Google Scholar 

  12. C.J. Todaor, M.A. Easton, D. Qiu, G. Wang, D.H. St. John, M. Qian, Metall. Mater. Trans. A, 2017, vol. 48, pp. 5579-5590.

    Article  Google Scholar 

  13. P. Lü, H.P. Wang, Scr. Mater., 2017, vol. 137, pp. 31-35.

    Article  Google Scholar 

  14. A. Ludwig, J.P. Mogeritsch, T. Pfeifer, Acta Mater., 2017, vol. 126, pp. 329-335.

    Article  Google Scholar 

  15. K. Tokieda, H. Yasuda, I. Ohnaka, Mater. Sci. Eng. A, 1999, vol. 262, pp. 238-245.

    Article  Google Scholar 

  16. D. Phelan, M. Reid, R. Dippenaar, Mater. Sci. Eng. A, 2008, vol. 477, pp. 226-232.

    Article  Google Scholar 

  17. M. Leonhardt, W. Löser, and H.-G. Lindenkreuz, Acta Mater., 2002, vol. 50, pp. 725-734.

    Article  Google Scholar 

  18. P. Lü, K. Zhou, H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 39042.

    Article  Google Scholar 

  19. W. Zhai, B. Wei, Mater. Lett., 2013, vol. 108, pp. 145-148.

    Article  Google Scholar 

  20. W. Löser, M. Leonhardt, H.-G. Lindenkreuz, B. Arnold, Mater. Sci. Eng. A, 2004, vol. 375, pp. 534-539.

    Article  Google Scholar 

  21. W.Z. Zhang, G.C. Weatherly, Prog. Mater. Sci., 2005, vol. 50, pp. 181-292.

    Article  Google Scholar 

  22. A.R.S. Gautam, J.M. Howe, Phil. Mag., 2011, vol. 91, pp. 3203-3227.

    Article  Google Scholar 

  23. Z.L. Ma, S.A. Belyakov, K. Sweatman, T. Nishimura, T. Nishimura, C.M. Gourlay, Nat. Commun., 2017, vol. 8, pp. 1916.

    Article  Google Scholar 

  24. H.I. Aaronson, C. Laird, K.R. Kinsman, Scr. Metall., 1968, vol. 2, pp. 259.

    Article  Google Scholar 

  25. P. Gargarella, S. Pauly, M. Samadi Khoshkhoo, U. Kühn, J. Eckert, Acta Mater., 2014, vol. 65, pp. 256-269.

    Article  Google Scholar 

  26. D.M. Lee. J.H. Sun, D.H. Kang, S.Y. Shin. G. Welsch, C.H. Lee, Intermetallics, 2012, vol. 21, pp. 67-74.

    Article  Google Scholar 

  27. A. Salčinović Fetić, G. Remenyi, D. Starešinić, A. Kuršumović, E. Babić, S. Sulejmanović, K. Biljaković, Phys. Rev. B, 2017, vol. 96, pp. 064201.

    Article  Google Scholar 

  28. M.H. Yang, Y. Li, J.H. Li, B.X. Liu, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 19976.

    Article  Google Scholar 

  29. G.W. Lee, Y.C. Cho, B. Lee, Kenneth F. Kelton, Phys. Rev. B, 2017, vol. 95, pp. 054202.

    Article  Google Scholar 

  30. M.H. Enayati, E. Dastanpoor, Metall. Mater. Trans. A, 2013, vol. 44, pp. 3984-3998.

    Article  Google Scholar 

  31. P. Kuhn, J. Horbach, F. Kargl, A. Meyer, Th. Voigtmann, Phys. Rev. B, 2014, vol. 90, pp. 024309.

    Article  Google Scholar 

  32. I. Kaban, P. Jóvári, V. Kokotin, O. Shuleshova, B. Beuneu, K. Saksl, N. Mattern, J. Eckert, and A.L. Greer, Acta Mater., 2013, vol. 61, pp. 2509-2520.

    Article  Google Scholar 

  33. M. Guerdane, H. Teichler, B. Nestler, Phys. Rev. Lett., 2013, vol. 110, pp. 086105.

    Article  Google Scholar 

  34. D. Turnbull, J. Appl. Phys., 1950, vol. 21, pp. 1022.

    Article  Google Scholar 

  35. J. Lipton, W. Kurz, R. Trivedi, Acta Metall., 1987, vol. 35, pp. 957–964.

    Article  Google Scholar 

  36. R. Trivedi, J. Lipton, W. Kurz, Acta Metall., 1987, vol. 35, pp. 965–970.

    Article  Google Scholar 

  37. W.J. Boettinger, S.R. Coriell, R. Trivedi: in Rapid solidification processing: principle and technologies IV, vol. 13, R. Mehrabian, and P.A. Parrish, eds. Baton Rouge, 1988.

  38. K.A. Jackson, in: R.H. Doremus, B.W. Roberts, D.Turnbull (Eds.), Growth and Perfection of Crystals, John Wiley, New York, 1958, pp. 319–324.

    Google Scholar 

  39. N.J.E. Adkins, P. Tsakiropoulos, Mater. Sci. Tech., 1991, vol. 7, pp. 334-340.

    Article  Google Scholar 

  40. E.S. Lee, S. Ahn, Acta Metall., 1994, vol. 42, pp. 3231-3243.

    Article  Google Scholar 

  41. P.S. Grant, B. Cantor, L. Katgerman, Acta Metall., 1993, vol. 41, pp. 3097-3108.

    Article  Google Scholar 

  42. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, in Binary alloy phase diagram, ASM International, 1990, vol. 3, p. 1249.

  43. E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7th, 1992 1–43 Ch. 14. London.

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant Nos. 51327901, 51522102, 51474175, and 51734008) and the Fundamental Research Funds for the Central Universities is gratefully acknowledged. The authors are grateful to E.Y Wang and F. Liu for their kind help with the EBSD experiments. We also thank Dr. J. Chang, Mr. M.X. Li, Mr. P.F. Zou, and Mr. Y.F. Si for the stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Manuscript submitted May 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, P., Wang, H.P. & Wei, B. Competitive Nucleation and Growth Between the Primary and Peritectic Phases of Rapidly Solidifying Ni–Zr Hypoperitectic Alloy. Metall Mater Trans A 50, 789–803 (2019). https://doi.org/10.1007/s11661-018-5048-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5048-7

Navigation