Skip to main content
Log in

Influence of lead fluoride on the mechanical properties of (\(\text{Cu}_{0.5} \text{Tl}_{0.5}\)): 1223 Phase

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work reveals the influence of lead fluoride substitution and liquid nitrogen immersion on the mechanical properties of high-temperature superconductor samples \(\left( {{\text{Cu}}_{0.5 - x} {\text{Tl}}_{0.5} {\text{Pb}}_{x} } \right){\text{Ba}}_{2} {\text{Ca}}_{2} {\text{Cu}}_{3} {\text{O}}_{10 - \delta - y} {\text{F}}_{y}\), with (0.00 ≤ x ≤ 0.10). The samples under investigation were synthesized by solid-state reaction method at normal pressure. The samples were characterized using X-ray powder diffraction (XRD) and scanning electron microscope (SEM). The X-ray data have indicated that the partial replacement of \({\text{Cu}}^{2 + }\) ions by Pb2+ ions and oxygen by fluorine in the reservoir layer do not alter the tetragonal structure of the samples. On the other hand, the values of the lattice parameters a and c were found to be varied with x according to the difference in the ionic radii of \({\text{Pb}}^{2 + } {\text{and Cu}}^{2 + }\) as well as to the oxygen content. SEM analysis has revealed that lead fluoride substitutions improve the inter-grains connectivity of the prepared samples. The values of the superconducting transition temperature (\(T_{\text{c}}\)) were determined using ac magnetic susceptibility measurements. Vickers microhardness \((H_{\text{v}} )\) was measured as a function of applied loads and the immersion time in liquid nitrogen (t). It was found that \(H_{\text{v}}\) values have recorded enhancements after one-hour immersion in liquid nitrogen. Moreover, the variation of \(H_{\text{v}}\) has shown an enhancement about 34% for x = 0.06. Furthermore, various models were employed to interpret the load dependence behavior of Hv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Ihara, Y. Sekita, H. Tateai, N.A. Khan, K. Ishida, E. Harashima et al., IEEE Trans. Appl. Supercond. 9(2), 1551–1554 (1999)

    Article  ADS  Google Scholar 

  2. M.A. Rahman, M.Z. Rahaman, M.N. Samsuddoha, Am. J. Phys. Appl. 3(2), 39–56 (2015)

    Google Scholar 

  3. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Supercond. Novel Magn. 24(5), 1463–1472 (2011)

    Article  Google Scholar 

  4. A. Srour, W. Malaeb, M. Rekaby, R. Awad, Phys. Scr. 92(10), 104002 (2017)

    Article  ADS  Google Scholar 

  5. R. Awad, A.A. Aly, M. Kamal, M. Anas, J. Supercond. Novel Magn. 24(6), 1947–1956 (2011)

    Article  Google Scholar 

  6. N.M. Hamdan, K.A. Ziq, A.S. Al-Harthi, Physica C Supercond. 314(1–2), 125–132 (1999)

    Article  ADS  Google Scholar 

  7. T.M. Chen, J.S. Ho, Physica C Supercond. 282, 915–916 (1997)

    Article  ADS  Google Scholar 

  8. A. Lenders, M. Mich, H.C. Freyhard, Physica C Supercond. 279(3–4), 173–180 (1997)

    Article  ADS  Google Scholar 

  9. M. Kühberger, G. Gritzner, Physica C Supercond. 390(3), 263–269 (2003)

    Article  ADS  Google Scholar 

  10. K. Sangwal, B. Surowska, Mater. Res. Innov. 7(2), 91–104 (2003)

    Article  Google Scholar 

  11. C.E. Foerster, E. Lima, P. Rodrigues Jr., F.C. Serbena, C.M. Lepienski, M.P. Cantão et al., Braz. J. Phys. 38(3A), 341–345 (2008)

    Article  ADS  Google Scholar 

  12. A.I. Abou-Aly, M.A. Gawad, R. Awad, I. G-Eldeen, J. Supercond. Novel Magn. 24(7), 2077 (2011)

    Article  Google Scholar 

  13. S.M. Khalil, J. Phys. Chem. Solids 64(5), 855–861 (2003)

    Article  ADS  Google Scholar 

  14. S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Tech. 186(1–3), 298–303 (2007)

    Article  Google Scholar 

  15. N.M. Anas, W.L. Quah, H. Zuhailawati, A.S. Anasyida, Procedia Chem. 19, 241–246 (2016)

    Article  Google Scholar 

  16. H.A. Cetinkara, M. Yilmazlar, O. Ozturk, M. Nursoy, C. Terzioglu, J. Phys. Confer. Ser. 153(1), 012038 (2009). (IOP Publishing)

    Article  Google Scholar 

  17. B.W. Mott, Butterworths Scientific Publications, London, UK (1956)

  18. M.M. Barakat, J. Supercond. Novel Magn. 30(10), 2945–2955 (2017)

    Article  Google Scholar 

  19. R. Terzioglu, S. Polat Altintas, A. Varilci, C. Terzioglu, J. Supercond. Novel Magn. 1–7 (2019)

  20. K. Sangwal, Cryst. Res. Technol. 44(10), 1019–1037 (2009)

    Article  Google Scholar 

  21. K. Yoda, T.A. Sualatu, N. Nomura, Y. Tsutsumi, H. Doi, S. Kurosu, A. Chiba, Y. Igarashi, T. Hanawa, Acta Bio. Mater. 8(7), 2856–2862 (2012)

    Google Scholar 

  22. C. Hays, E.G. Kendall, Metallography 6(4), 275–282 (1973)

    Article  Google Scholar 

  23. B.R. Lawn, V.R. Howes, J. Mater. Sci. 16(10), 2745–2752 (1981)

    Article  ADS  Google Scholar 

  24. H. Li, R.C. Bradt, J. Mater. Sci. 28(4), 917–926 (1993)

    Article  ADS  Google Scholar 

  25. H. Li, R.C. Bradt, J. Mater. Sci. 31(4), 1065–1070 (1996)

    Article  ADS  Google Scholar 

  26. O. Ozturk, E. Asikuzun, A.T. Tasci, T. Gokcen, H. Ada, H. Koralay, S. Cavdar, J. Mater. Sci.: Mater. Electron. 29(5), 3957–3966 (2018)

    Google Scholar 

  27. J.B. Quinn, D.G. Quinn, J. Mater. Sci. 32(16), 4331–4346 (1997)

    Article  ADS  Google Scholar 

  28. O. Ozturk, R.A.M. Arebat, A.R.A. Nefrow, F. Bulut, G. Guducu, E. Asikuzun, S. Celik, J. Mater. Sci.: Mater. Electron. 30(8), 7400–7409 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was performed in the Materials Science lab, Physics Department, Faculty of Science, Beirut Arab University, in cooperation with the Superconductivity and metallic-glass lab, Faculty of Science, Alexandria University, Egypt, American University of Beirut (AUB) and Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut, Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Basma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuHlaiwa, H., Basma, H., Rekaby, M. et al. Influence of lead fluoride on the mechanical properties of (\(\text{Cu}_{0.5} \text{Tl}_{0.5}\)): 1223 Phase. Appl. Phys. A 125, 715 (2019). https://doi.org/10.1007/s00339-019-2972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2972-3

Navigation