Skip to main content
Log in

Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article reports the fabrication and characterization of thin films of pure and cobalt doped ZnO (Co at 4% and 7%), a transparent diluted magnetic semiconductor (DMS) grown on ‘Si’ and glass substrates by RF magnetron sputtering technique. The crystalline structure and phase of the grown thin films were analyzed by using X-ray diffraction (XRD) method which confirmed the hexagonal wurtzite structure of the ZnO with slight lattice strain and change in orientation of the planes. The XRD also confirmed that, the films exhibit prominent peaks of (1 0 1) and (1 0 3) with polycrystalline nature. The morphology of the grown thin films was investigated by scanning electron microscopy (SEM) which confirmed the variation of micro-structure and size of the polycrystalline film’s surface. The energy dispersive X-ray spectra (EDS) from SEM have confirmed the presence of constituent elements in the films and concentration (in %) of each element. The crystalline properties and morphology of the film’s cross-section were studied by high resolution transmission electron microscopy (HR-TEM). The average thickness of the films was found to be about 600 nm  from the cross-section electron microscopic images. The selected area electron diffraction (SAED) pattern from TEM was recorded for the Co (7%) doped ZnO film which has good polycrystalline quality. The optical transmittance of the films coated on corning glass substrates was investigated by UV–Visible spectrophotometer for pure, 4% and 7% Co doped ZnO films, which revealed the optical transparency of 85%, 75% and 65%, respectively. The room temperature ferromagnetism of the doped films was analysed by vibrating sample magnetometry and magneto optic Kerr effect. It was found that the ferromagnetic behaviour of films increases with ‘Co’ content and the results were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Salavati-Niasari, N. Mir, F. Davar, ZnO nanotriangles: synthesis, characterization and optical properties. J. Alloy. Compd. 476, 908–912 (2009)

    Article  Google Scholar 

  2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind et al., Room-Temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    Article  ADS  Google Scholar 

  3. N.H. Al-Hardan, M.J. Abdullah, N.M. Ahmed, F.K. Yam, A. Abdul Aziz, UV photodetector behavior of 2D ZnO plates prepared by electrochemical deposition. Superlattice Microstruct. 51, 765–771 (2012)

    Article  ADS  Google Scholar 

  4. A.A. Bergh, P.J. Dean, Light emitting diodes (Clarendon, Oxford, 1976). (Mir, Moscow, 1987)

    Google Scholar 

  5. H. Han, N.D. Theodore, T.L. Alford, Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer. J. Appl. Phys. 103, 013708 (2008)

    Article  ADS  Google Scholar 

  6. A.P. Abiyasa, S.F. Yu, S.P. Lau, E.S.P. Leong, H.Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 90(23), 231106–231113 (2007)

    Article  ADS  Google Scholar 

  7. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem. Eng. J. 146, 498–502 (2009)

    Article  Google Scholar 

  8. A.K. Babaheydari, M. Salavati-Niasari, A. Khansari, Solvent-less synthesis of zinc oxide nanostructures from Zn(salen) as precursor and their optical properties. Particuology 10, 759–764 (2012)

    Article  Google Scholar 

  9. M. Goudarzi, M. Mousavi-Kamazani, M. Salavati-Niasari, Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci. Mater. Electron. 28, 8423–8428 (2017)

    Article  Google Scholar 

  10. M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, A facile room temperature synthesis of zinc oxide nanostructure and its influence on the flame retardancy of poly vinyl alcohol. J. Cluster Sci. 25, 397–408 (2014)

    Article  Google Scholar 

  11. A.P. Bhirud, S.D. Sathaye, R.P. Waichal, L.K. Nikam, B.B. Kale, An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chem. 14, 2790–2798 (2012)

    Article  Google Scholar 

  12. F. Soofivand, M. Salavati-Niasari, F. Mohandes, Novel precursor-assisted synthesis and characterization of zinc oxide nanoparticles/nanofibers. Mater. Lett. 98, 55–58 (2013)

    Article  Google Scholar 

  13. H. Cao, J.Y. Xu, E.W. Seelig, R.P.H. Chang, Microlaser made of disordered media. Appl. Phys. Lett. 76, 2997 (2000)

    Article  ADS  Google Scholar 

  14. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270 (1998)

    Article  ADS  Google Scholar 

  15. H.Y. Xu, Y.C. Liu, Y.X. Liu, C.S. Xu, C.L. Shao, R. Mu, Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B Laser Optic. 80(7), 871 (2005)

    Article  ADS  Google Scholar 

  16. P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 1117 (2003)

    Article  ADS  Google Scholar 

  17. H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, X.W. Fan, F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Appl. Phys. Lett. 86, 123107 (2005)

    Article  ADS  Google Scholar 

  18. M. Salavati-Niasari, F. Davar, A. Khansari, Nanosphericals and nanobundles of ZnO: Synthesis and characterization. J. Alloy. Compd. 509, 61–65 (2011)

    Article  Google Scholar 

  19. Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017)

    Article  Google Scholar 

  20. V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram. Int. 41, 14239–14244 (2015)

    Article  Google Scholar 

  21. N. Mir, M. Salavati-Niasari, F. Davar, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181, 779–789 (2012)

    Article  Google Scholar 

  22. A.B. Djurisic, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1, 400 (2014)

    Article  Google Scholar 

  23. M. Salavati-Niasari, F. Davar, M. Mazaheri, Preparation of ZnO nanoparticles from [bis(acetylacetonato)zinc(II)]–oleylamine complex by thermal decomposition. Mater. Lett. 62, 1890–1892 (2008)

    Article  Google Scholar 

  24. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  25. G. Mihály, M. Csontos, S. Bordács, I. Kézsmárki, T. Wojtowicz, X. Liu, B. Jankó, J.K. Furdyna, Anomalous hall effect in the (In, Mn)Sb dilute magnetic semiconductor. Phys. Rev. Lett. 100, 1–4 (2008)

    Article  Google Scholar 

  26. J.S. Kulkarni, O. Kazakova, J.D. Holmes, Dilute magnetic semiconductor nanowires. Appl. Phys. A 85, 277–286 (2006)

    Article  ADS  Google Scholar 

  27. C. Claude, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007)

    Article  ADS  Google Scholar 

  28. S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010)

    Article  Google Scholar 

  29. B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, A. Petrou, Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62, 8180 (2000)

    Article  ADS  Google Scholar 

  30. I. Appelbaum, B. Huang, D.J. Monsma, Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007)

    Article  ADS  Google Scholar 

  31. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  32. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  33. S.A. Wolf, A.A. Awschalom, R.A. Buhrman, J.M. Daughton, S. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001)

  34. M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 229, 293–299 (2017)

    Article  Google Scholar 

  35. B. Panigrahy, M. Aslam, D. Bahadur, Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation. Appl. Phys. Lett. 98, 183109 (2011)

    Article  ADS  Google Scholar 

  36. P. Bandyopadhyay, A. Dey, R. Basu, S. Das, P. Nandy, Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion. Curr. Appl. Phys. 14, 1149–1155 (2014)

    Article  ADS  Google Scholar 

  37. F. Pan, C. Song, X. Liu, Y. Yang, F. Zeng, Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R Rep. 62, 1–35 (2008)

    Article  Google Scholar 

  38. B.P. Kafle, S. Acharya, S. Thapa, S. Poudel, Structural and optical properties of Fe-doped ZnO transparent thin films. Ceram. Int. 42, 1133–1139 (2016)

    Article  Google Scholar 

  39. S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloy Compd. 640, 408–415 (2015)

    Article  Google Scholar 

  40. K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Tech. 17, 367 (2002)

    Article  ADS  Google Scholar 

  41. P.A. Wolff, R.N. Bhatt. A.C. Durst, Polaron‐polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196 (1996)

    Article  ADS  Google Scholar 

  42. A. Kaminski, S. Das Sarma, Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)

  43. D. Akcan, S. Ozharar, E. Ozugurlu, L. Arda, The effects of Co/Cu Co-doped ZnO thin films: An optical study. J. Alloy. Compd. 797, 253–261 (2019)

    Article  Google Scholar 

  44. P. Shukla, S. Tiwari, S. Ram Joshi, V.R. Akshay, M. Vasundhara, S. Varma, J. Singh, A. Chanda, Investigation on structural, morphological and optical properties of Co-doped ZnO thin films. Phys. B Condens. Matter 550, 303–310 (2018)

    Article  ADS  Google Scholar 

  45. A. Ali, A. Luiz Pinto, R. Henda, R. Fagerberg, Influence of Co loading on structural and morphological properties of Co-doped ZnO thin films grown by pulsed electron beam ablation. J. Alloy. Compd. 731, 181–188 (2018)

    Article  Google Scholar 

  46. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001)

    Article  ADS  Google Scholar 

  47. S. Ge, B. Zhang, C. Yang, Characterization of Er-doped AlN films prepared by RF magnetron sputtering. Surf. Coat. Technol. 358, 404–408 (2019)

    Article  Google Scholar 

  48. C.-Y. Guo, X. Qi, RF magnetron sputter deposition and electrical properties of La and Y doped SrTiO3 epitaxial films. Mater. Des. 179, 107888 (2019)

    Article  Google Scholar 

  49. A. Zdyb, E. Krawczak, S. Gułkowski, The influence of annealing on the properties of ZnO: Al layers obtained by RF magnetron sputtering. Opto Electron Rev 26(3), 247–251 (2018)

    Article  ADS  Google Scholar 

  50. H. Mehmood, G. Bektaş, İ. Yıldız, T. Tauqeer, H. Nasser, R. Turan, Electrical, optical and surface characterization of reactive RF magnetron sputtered molybdenum oxide films for solar cell applications. Mater. Sci. Semicond. Process. 101, 46–56 (2019)

    Article  Google Scholar 

  51. T. Welzel, K. Ellmer, The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering. Surf. Coat. Technol. 205, S294–S298 (2011)

    Article  Google Scholar 

  52. R. Siddheswaran, R. Medlin, P. Calta, P. Sutta, Preparation of Nc-Si/A-SiO2 multi-layer thin film specimens for TEM cross-section observation by Cryo Argon ion slicing. JOJ Mater. Sci. 1(5), 555574 (2017)

    Google Scholar 

  53. J.L. Lábár, Consistent indexing of a (set of) single crystal SAED pattern(s) with the process diffraction program. Ultramicroscopy 103, 237–249 (2005)

    Article  Google Scholar 

  54. T.F. Jaramillo, S. Baeck, A.K. Shwarsctein, K.S. Choi, G.D. Stucky, E.W. McFarland, J. Comb. Chem. 7, 264–271 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding and first author R.S acknowledges Tamilnadu State Council for Science and Technology (TNSCST), India for the award Young Scientist Fellowship (YSF) scheme 2018–2019, No. TNSCST/YSFS/VR/01/2018-2019/7108, dated 25/05/2019 for the partial financial support to carry out the research work. One of the authors, R.M acknowledges the CEDAMNF project, Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000358, co-funded by the ERDF as part of the MSMT, for the partial financial support towards the development of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Siddheswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheswaran, R., Medlín, R., Jeyanthi, C.E. et al. Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications. Appl. Phys. A 125, 592 (2019). https://doi.org/10.1007/s00339-019-2886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2886-0

Navigation