Skip to main content
Log in

Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: structural, morphological, optical, electrical and magnetic investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, undoped and Fe-doped ZnO thin films at various concentrations (2, 4 and 6 at.%) were deposited onto glass substrate by using ultrasonic spray pyrolysis in order to investigate the effect of Fe doping on the structural, morphological, optical, electrical and magnetic properties of ZnO thin films. X-ray diffractometer (XRD) results revealed that all deposited thin films have hexagonal wurtzite structure and Fe doping led to decrease in mean crystallite size. Atomic force microscopy images showed that thin films were composed of tightly packed grains. Optical examinations indicated that optical transmittance remarkably decreased with the increase in the amount of Fe concentration in thin films. Additionally, optical band gap of deposited films were determined in the range of 3.26–3.29 eV. It was determined that all deposited thin films have n-type conductivity and electrical resistivity increased up to 253.6 Ωcm as a consequence of Fe doping. Vibrating sample magnetometer measurements showed that all films have ferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  2. M. Li, J. He, Mater. Lett. 174, 48 (2016)

    Article  CAS  Google Scholar 

  3. J. Wang, W. Zhou, P. Wu, Appl. Surf. Sci. 314, 188 (2014)

    Article  CAS  Google Scholar 

  4. G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Appl. Surf. Sci. 313, 870 (2014)

    Article  CAS  Google Scholar 

  5. L.W. Lai, C.T. Lee, Mater. Chem. Phys. 110, 393 (2008)

    Article  CAS  Google Scholar 

  6. L.V. Gritsenko, K.A. Abdullin, M.T. Gabdullin, Z.K. Kalkozova, S.E. Kumekov, Z.O. Mukash, A.Y. Sazonov, E.I. Terukov, J. Cryst. Growth 457, 164 (2017)

    Article  CAS  Google Scholar 

  7. B. Santara, K. Imakita, M. Fujii, P.K. Giri, J. Alloy. Compd. 661, 331 (2016)

    Article  CAS  Google Scholar 

  8. G.G. Khan, S. Ghosh, K. Mandal, J. Solid State Chem. 186, 278 (2012)

    Article  CAS  Google Scholar 

  9. H. Cao, P. Xing, D. Yao, P. Wu, J. Magn. Magn. Mater. 429, 69 (2017)

    Article  CAS  Google Scholar 

  10. S.W. Kim, S. Lee, A.N.S. Saqib, Y.H. Lee, M.H. Jung, Curr. Appl. Phys. 17, 181 (2017)

    Article  Google Scholar 

  11. Z. Quan, X. Liu, Y. Qi, Z. Song, S. Qi, G. Zhou, X. Xu, Appl. Surf. Sci. 399, 751 (2017)

    Article  CAS  Google Scholar 

  12. A.K. Das, A. Srinivasan, J. Magn. Magn. Mater. 404, 190 (2016)

    Article  CAS  Google Scholar 

  13. S. Mal, S. Nori, J. Narayan, J.T. Prater, D.K. Avasthi, Acta Mater. 61, 2763 (2013)

    Article  CAS  Google Scholar 

  14. K. Rainey, J. Chess, J. Eixenberger, D.A. Tenne, C.B. Hanna, A. Punnoose, J. Appl. Phys. 115, 17D727 (2014)

    Article  Google Scholar 

  15. S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, RSC Adv. 5, 99766 (2015)

    Article  CAS  Google Scholar 

  16. C. Liu, F. Yun, H. Morkoc, J. Mater. Sci.-Mater. Electron. 16, 555 (2005)

    Article  CAS  Google Scholar 

  17. K. Sato, H. Katayama-Yoshida, Phys. Status Solidi B 229, 673 (2002)

    Article  CAS  Google Scholar 

  18. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  CAS  Google Scholar 

  19. S.J. Chen, H.Y. Xu, S.X. Wang, K. Suzuki, Integr. Ferroelectr. 144, 1 (2013)

    Article  CAS  Google Scholar 

  20. S.A. Ahmed, Appl. Phys. A 123, 440 (2017)

    Article  Google Scholar 

  21. M. Ashokkumar, S. Muthukumaran, Physica E 69, 354 (2015)

    Article  CAS  Google Scholar 

  22. M. Cernea, V. Mihalache, E.C. Secu, R. Trusca, V. Bercu, L. Diamandescu, Superlattice Microstruct. 104, 362 (2017)

    Article  CAS  Google Scholar 

  23. A. Goktas, I.H. Mutlu, Y. Yamada, Superlattice Microstruct. 57, 139 (2013)

    Article  CAS  Google Scholar 

  24. F. Lmai, R. Moubah, A. El Amiri, Y. Abid, I. Soumahoro, N. Hassanain, S. Colis, G. Schmerber, A. Dinia, H. Lassri, Opt. Mater. 57, 28 (2016)

    Article  CAS  Google Scholar 

  25. P. Ariyakkani, L. Suganya, B. Sundaresan, J. Alloy. Compd. 695, 3467 (2017)

    Article  CAS  Google Scholar 

  26. T. Srinivasulu, K. Saritha, K.T.R. Reddy, Mod. Electron. Mater. 3, 76 (2017)

    Article  Google Scholar 

  27. A. Kumar, P. Dhiman, M. Singh, Ceram. Int. 42, 7918 (2016)

    Article  CAS  Google Scholar 

  28. K. Singh, V. Devi, R. Dhar, D. Mohan, Superlattice Microstruct. 85, 433 (2015)

    Article  CAS  Google Scholar 

  29. P.S. Patil, Mater. Chem. Phys. 59, 185 (1999)

    Article  CAS  Google Scholar 

  30. M.R. Islam, J. Podder, Cryst. Res. Technol. 44, 286 (2009)

    Article  CAS  Google Scholar 

  31. L. Xu, X. Li, J. Cryst. Growth 312, 851 (2010)

    Article  CAS  Google Scholar 

  32. A. Goktas, F. Aslan, A. Tumbul, S.H. Gunduz, Ceram. Int. 43, 704 (2017)

    Article  CAS  Google Scholar 

  33. V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer Science-Business Media Inc., Berlin, 2003), pp. 164–167

    Google Scholar 

  34. M. Salem, S. Akir, T. Ghrib, K. Daoudi, M. Gaidi, J. Alloy. Compd. 685, 107 (2016)

    Article  CAS  Google Scholar 

  35. J.A.R. Márquez, C.M.B. Rodríguez, C.M. Herrera, E.R. Rosas, O.Z. Angel, O.T. Pozos, Int. J. Electrochem. Sci. 6, 4059 (2011)

    Google Scholar 

  36. E. Sarica, V. Bilgin, Surf. Coat. Technol. 286, 1 (2016)

    Article  CAS  Google Scholar 

  37. H. Mahdhi, J.L. Gauffier, K. Djessas, Z.B. Ayadi, Opt.-Int. J. Light Electron Opt. 137, 156 (2017)

    Article  CAS  Google Scholar 

  38. O. Makuku, F. Mbaiwa, T.S. Sathiaraj, Ceram. Int. 42, 14581 (2016)

    Article  CAS  Google Scholar 

  39. U. Chaitra, D. Kekuda, K.M. Rao, Ceram. Int. 43, 7115 (2017)

    Article  CAS  Google Scholar 

  40. K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, J. Phys. Chem. Solids 104, 36 (2017)

    Article  CAS  Google Scholar 

  41. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company Inc., Boston, 1956), pp. 259–263

    Google Scholar 

  42. R. Saleh, N.F. Djaja, Spectrochim. Acta A 130, 581 (2014)

    Article  CAS  Google Scholar 

  43. K. Xu, C. Liu, R. Chen, X. Fang, X. Wu, J. Liu, Physica B 502, 155 (2016)

    Article  CAS  Google Scholar 

  44. T. Suzuki, H. Chiba, T. Kawashima, K. Washio, Thin Solid Films 605, 53 (2016)

    Article  CAS  Google Scholar 

  45. N.A. Ahmed, G. Fortas, H. Hammache, S. Sam, A. Keffous, A. Manseri, L. Guerbous, N. Gabouze, Appl. Surf. Sci. 256, 7442 (2010)

    Article  Google Scholar 

  46. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, B. Zou, Mater. Lett. 61, 2000 (2007)

    Article  CAS  Google Scholar 

  47. B.P. Kafle, S. Acharya, S. Thapa, S. Poudel, Ceram. Int. 42, 1133 (2016)

    Article  CAS  Google Scholar 

  48. J.I. Pankove, Optical process in semiconductors, (Solid State Physical Electronics Series (Prentice-Hall, New Jersey, 1971)

    Google Scholar 

  49. F. Gao, X.Y. Liu, L.Y. Zheng, M.X. Li, Y.M. Bai, J. Xie, J. Cryst. Growth 371, 126 (2013)

    Article  CAS  Google Scholar 

  50. Z.C. Chen, L.J. Zhuge, X.M. Wu, Y.D. Meng, Thin Solid Films 515, 5462 (2007)

    Article  CAS  Google Scholar 

  51. C. Wang, Z. Chen, Y. He, L. Li, D. Zhang, Appl. Surf. Sci. 255, 6881 (2009)

    Article  CAS  Google Scholar 

  52. S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrogen Energy 34, 5260 (2009)

    Article  CAS  Google Scholar 

  53. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  CAS  Google Scholar 

  54. S. Alamdari, M.J. Tafreshi, M.S. Ghamsari, Mater. Lett. 197, 94 (2017)

    Article  CAS  Google Scholar 

  55. J. Angulo-Rocha, O. Velarde-Escobar, C. Yee-Rendón, G. Atondo-Rubio, R. Millan-Almaraz, E. Camarillo-García, M. Garcia-Hipolito, F. Ramos-Brito, J. Lumin. 185, 306 (2017)

    Article  CAS  Google Scholar 

  56. K.L. Chopra, Thin Film Phenomena, (MC Graw Hill, New York, 1969) pp. 84–90

    Google Scholar 

  57. H. Colak, O. Türkoğlu, J. Mater. Sci. Technol. 28, 268 (2012)

    Article  CAS  Google Scholar 

  58. W. Cheng, X. Ma, J. Phys. Conf. Ser. 152, 012039 (2009)

    Article  Google Scholar 

  59. G. Srinet, P. Varshney, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S.K. Sharma, Ceram. Int. 39, 6077 (2013)

    Article  CAS  Google Scholar 

  60. X. Hou, H. Liu, H. Sun, L. Liu, X. Jia, Mater. Sci. Eng. B 200, 22 (2015)

    Article  CAS  Google Scholar 

  61. S. Mal, T.H. Yang, C. Jin, S. Nori, J. Narayan, J.T. Prater, Scr. Mater. 65, 1061 (2011)

    Article  CAS  Google Scholar 

  62. S. Majumder, D. Paramanik, A. Gupta, S. Varma, Appl. Surf. Sci. 256, 513 (2009)

    Article  CAS  Google Scholar 

  63. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  CAS  Google Scholar 

  64. Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, T. Wu, Appl. Phys. Lett. 98, 162503 (2011)

    Article  Google Scholar 

  65. R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, J.Q. Xiao, J. Appl. Phys. 85, 6655 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canakkale Onsekiz Mart University Scientific Research Projects Committee under the Project Number 2010/0198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Sarica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, V., Sarica, E., Demirselcuk, B. et al. Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: structural, morphological, optical, electrical and magnetic investigations. J Mater Sci: Mater Electron 29, 17542–17551 (2018). https://doi.org/10.1007/s10854-018-9855-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9855-9

Navigation