Skip to main content
Log in

Phase transition and changing properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique, as a function of tungsten dopant

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To investigate their formation mechanism and basic electronic behaviors, in this study undoped and tungsten (W)-doped vanadium oxide films were comparatively analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, photoluminescence (PL) and UV–Vis spectroscopy. The XRD measurement showed that the W doping causes a change in crystalline phase, improvement of grain size, a decrease in dislocation and stress with different dopant ratios. The SEM and AFM images evidenced that the W-doped films change nanostructured form from nanorods to composition of nanorods and nanoplates at 400 °C, which is 20% lower than general formation temperature of vanadium pentoxide (V2O5) nanorods, while the undoped film have small-sized nanostructural morphology as an initial stage. The Raman spectrum also indicates significant changes of its structural and optical properties. The PL quenching is observed in the PL spectra of the W-doped V2O5 films with decreasing deep-level emission. Band gap, Urbach energy, reflective index and dielectric constant of all the films were calculated by data of the UV–Vis and reflectance measurements. The results showed that the W-doped V2O5 films were more suitable for (opto)electronic device applications such as solar cell, gas sensor, electrochromic electrode and battery.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Singh, A. Umar, N. Singh, H. Fouad, O.Y. Alothman, F.Z. Haque, Highly sensitive optical ammonia gas sensor based on Sn doped V2O5 nanoparticles. Mater. Res. Bull. 108, 266–274 (2018)

    Article  Google Scholar 

  2. H. Liu, Y. Gao, J. Zhou, X. Liu, Z. Chen, C. Cao, H. Luo, M. Kanehira, Growth of oriented vanadium pentaoxide nanostructures on transparent conducting substrates and their applications in photocatalysis. J. Solid State Chem. 214, 79–85 (2014)

    Article  ADS  Google Scholar 

  3. M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7, 1700885 (2017)

    Article  Google Scholar 

  4. D. Wang, D.K. Elumalai, M.A. Mahmud, M. Wright, M.B. Upama, K.H. Chan, C. Xu, F. Haque, G. Conibeer, A. Uddin, V2O5-PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells. Org. Electron. 53, 66–73 (2018)

    Article  Google Scholar 

  5. M.Y. Ameen, P. Shamjid, T. Abhijith, V.S. Reddy, Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells. Opt. Mater. 75, 491–500 (2018)

    Article  ADS  Google Scholar 

  6. S. Vadnala, N. Paul, A. Agrawal, S.G. Singh, Enhanced infrared sensing properties of vanadium pentoxide nanofibers for bolometer application. Mater. Sci. Semicond. Process. 81, 82–88 (2018)

    Article  Google Scholar 

  7. D.X. Long, Y. Xu, S.J. Kang, W.T. Park, E.Y. Choi, Y.C. Nah, C. Liu, Y.Y. Noh, Solution processed vanadium pentoxide as charge injection layer in polymer field-effect transistor with Mo electrodes. Org. Electron. 17, 66–76 (2015)

    Article  Google Scholar 

  8. Y. Qin, L. Zhao, M. Cui, “Ultrathin vanadium pentoxide nanobelt for ethanol-sensing applications: experimental and ab initio study. J. Alloys Compd. 735, 1480–1487 (2018)

    Article  Google Scholar 

  9. E. Eren, C. Alver, G.Y. Karaca, E. Uygun, L. Oksuz, A.U. Oksuz, High-performance flexible complementary electrochromic device based on plasma modified WO3 nano hybrids and V2O5 nanofilm with low operation voltages. Electroanalysis 30, 1–12 (2018)

    Article  Google Scholar 

  10. Z. Liu, H. Zhang, Q. Yang, Y. Chen, Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim. Acta 287, 149–157 (2018)

    Article  Google Scholar 

  11. K.Y. Pan, D.H. Wei, Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires. Appl. Surf. Sci. 427, 1064–1070 (2018)

    Article  ADS  Google Scholar 

  12. S. Iwanaga, M. Marciniak, R.B. Darling, F.S. Ohuchi, Thermopower and electrical conductivity of sodium-doped V2O5 thin films. J. Appl. Phys. 101, 123709 (2007)

    Article  ADS  Google Scholar 

  13. K. McColl, I. Johnson, F. Cora, Thermodynamics and defect chemistry of substitutional and interstitial cation doping in layered a-V2O5. Phys. Chem. Chem. Phys. 20, 15002 (2018)

    Article  Google Scholar 

  14. B. Etemadi, J. Mazloom, F.E. Ghodsi, Phase transition and surface morphology effects on optical, electrical and lithiation/delithiation behavior of nanostructured Ce-doped V2O5 thin films. Mater. Sci. Semicond. Process. 61, 99–106 (2017)

    Article  Google Scholar 

  15. A. Gies, B. Pecquenard, A. Benayad, H. Martinez, D. Gonbeau et al., Effect of silver co-sputtering on V2O5 thin films for lithium micro batteries. Thin Solid Films 516, 7271–7281 (2008)

    Article  ADS  Google Scholar 

  16. M.S. Renard, N. Emery, R. Baddour-Hadjean, J.P. Pereira-Ramos, γ’-V2O5: a new high voltage cathode material for sodium-ion battery. Electrochim. Acta 252, 4–11 (2017)

    Article  Google Scholar 

  17. R. Irani, M.S. Rozati, S. Beke, Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: effect of the substrate temperature. Mater. Chem. Phys. 139, 489–493 (2013)

    Article  Google Scholar 

  18. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, M. Bououdina, High-performance p–n heterojunction photodetectors based on V2O5 nanorods by spray pyrolysis. Appl. Phys. A 122, 817 (2016)

    Article  ADS  Google Scholar 

  19. M. Mousavi, M. Kompany, N. Shahtahmasebi, M.M. Bagheri-Mohagheghi, Study of structural, electrical and optical properties of vanadium oxide condensed films deposited by spray pyrolysis technique. Adv. Manuf. 1, 320–328 (2013)

    Article  Google Scholar 

  20. M. Przesniak-Welenc, M. Lapinski, T. Lewandowski, B. Koscielska, L. Wicikowski, W. Sadowski, The influence of thermal conditions on V2O5 nanostructures prepared by sol–gel method. J. Nanomater. 2015, 1–8 (2015)

    Article  Google Scholar 

  21. Y. Wang, Z. Li, X. Sheng, Z. Zhang, Synthesis and optical properties of V2O5 nanorods. J. Chem. Phys. 126, 164701 (2007)

    Article  ADS  Google Scholar 

  22. G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin, J. Liu, Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol–gel method. Sci. Rep. 7, 6132 (2017)

    Article  ADS  Google Scholar 

  23. S. Lu, Z. Xue, Y. Chen, F. Wan, Q. Zhu, G.S. Zakharova, Researches on the structure and electrochemical properties of MoxV2−xO5+y nanosheets. Ionics 23, 2855 (2017)

    Article  Google Scholar 

  24. T.M. Westphal, C.M. Cholant, C.F. Azevedo, E.A. Moura, D.L. da Silva et al., Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. J. Electroanal. Chem. 790, 50–56 (2017)

    Article  Google Scholar 

  25. M. Mousavi, GhH Khorrami, A. Kompany, ShT Yazdi, Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films. Appl. Phys. A 123, 755 (2017)

    Article  ADS  Google Scholar 

  26. S. Kredentser, L. Bugaeva, A. Derzhypolski, D. Cherepanov et al., Stability criteria for aqueous colloidal vanadium pentoxide suspensions doped with magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 506, 774–781 (2016)

    Article  Google Scholar 

  27. S.Y. Zhan, C.Z. Wang, K. Nikolowski, H. Ehrenberg, G. Chen, Y.J. Wei, Electrochemical properties of Cr doped V2O5 between 3.8 V and 2.0 V. Solid State Ion. 180, 1198–1203 (2009)

    Article  Google Scholar 

  28. J. Zheng, Y. Zhang, X. Jing, Q. Wang, T. Hu, N. Xing, C. Meng, Improvement of the specific capacitance of V2O5 nanobelts as supercapacitor electrode by tungsten doping. Mater. Chem. Phys. 186, 5–10 (2017)

    Article  Google Scholar 

  29. Y. Chen, W.D. Liang, H. Xu, Effect of Mo on phase transition temperature of VO2 nanopowders. Mater. Res. Innov. 14(2), 173–176 (2010)

    Article  Google Scholar 

  30. Z. Wan, H. Mohammad, Y. Zhao, R.B. Darling, M.P. Anantram, Bipolar resistive switching characteristics of thermally evaporated V2O5 thin films. IEEE Electron Device Lett. 39, 9 (2018)

    Google Scholar 

  31. C.V. Ramana, R.J. Smith, O.M. Hussain, C.M. Julien, On the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Mater. Sci. Eng. B 111, 218–225 (2004)

    Article  Google Scholar 

  32. M. Panagopoulou, D. Vernardou, E. Koudoumas, D. Tsoukalas, Y.S. Raptis, Oxygen and temperature effects on the electrochemical and electrochromic properties of rf-sputtered V2O5 thin films. Electrochim. Acta 232, 54–63 (2017)

    Article  Google Scholar 

  33. S.V. Grayli, G.W. Leach, B. Bahreyni, Sol–gel deposition and characterization of vanadium pentoxide thinfilms with high TCR. Sens. Actuators A 279, 630–637 (2018)

    Article  Google Scholar 

  34. C. Drosos, C. Jia, S. Mathew, R.G. Palgrave, B. Moss, A. Kafizas, D. Vernardou, Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries. J. Power Sources 384, 355–359 (2018)

    Article  ADS  Google Scholar 

  35. S. Thiagarajan, M. Thaiyan, R. Ganesan, Physical properties exploration of highly oriented V2O5 thin films prepared by electron beam evaporation. New J. Chem. 39, 9471–9479 (2015)

    Article  Google Scholar 

  36. R. Irani, S.M. Rozati, S. Beke, Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique. Appl. Phys. A 124, 321 (2018)

    Article  ADS  Google Scholar 

  37. N. Abd-Alghafour, N.M. Ahmed, Z. Hassan, S.M. Mohammad, M. Bououdina, M. Ali, Characterization of V2O5 nanorods grown by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 27, 4613–4621 (2016)

    Article  Google Scholar 

  38. C. Batista, R.M. Ribeiro, V. Teixeira, Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res. Lett. 6, 301 (2011)

    Article  ADS  Google Scholar 

  39. I. Pradeep, E.R. Kumar, N. Suriyanaranan, Ch. Srinivas, N.V. Rao, Structural, optical and electrical properties of pure and Fe doped V2O5 nanoparticles for junction diode fabrications. J. Mater. Sci. Mater. Electron. 29, 9840–9853 (2018). https://doi.org/10.1007/s10854-018-9024-1

    Article  Google Scholar 

  40. W. Xue-Jin, L. Yu-Ying, L. De-Hua, F. Bao-Hua, H. Zhi-Wei, Q. Zheng, Structural and optical properties of tungsten-doped vanadium dioxide films. Chin. Phys. B 22(6), 066803 (2013)

    Article  ADS  Google Scholar 

  41. N.J. Ridha, F.K.M. Alosfur, M.H.H. Jumali, S. Radiman, Dimensional effect of ZnO nanorods on gas-sensing performance. J. Phys. D Appl. Phys. 51, 43 (2018)

    Article  Google Scholar 

  42. B. Balamuralitharan, I.H. Cho, J.S. Baka, H.J. Kim, V2O5 nanorod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. New J. Chem. 42, 11862–11868 (2018)

    Article  Google Scholar 

  43. J. Lee, Y. Wu, Z. Peng, Hetero-nanostructured materials for high-power lithium ion batteries. J. Colloid Interface Sci. 529, 505–519 (2018)

    Article  ADS  Google Scholar 

  44. D. Mukherjee, D. Das, A. Dey, A.K. Mallik, J. Ghosh, A.K. Sharma, A.K. Mukhopadhyay, Evaluation of temperature-dependent microstructural and nanomechanical properties of phase pure V2O5. J. Sol-Gel Sci. Technol. 87, 347–361 (2018). https://doi.org/10.1007/s10971-018-4745-4

    Article  Google Scholar 

  45. M. Ugurlu, B. Alım, I. Han, L. Demir, Delocalization and charge transfer studies of PERMENDUR49, KOVAR and Ti50Co50 alloys from relative K X-ray intensity ratios. J. Alloys Compd. 695, 2619–2627 (2017)

    Article  Google Scholar 

  46. A.A. Mane, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Superior selectivity and enhanced response characteristics of palladium sensitized vanadium pentoxide nanorods for detection of nitrogen dioxide gas. J. Colloid Interface Sci. 495, 53–60 (2017)

    Article  ADS  Google Scholar 

  47. W.J. Yan, M. Hu, J.R. Liang, D.F. Wang, Y.L. Wei, Y.X. Qin, Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods. Chin. Phys. B 25(4), 040702 (2016)

    Article  Google Scholar 

  48. C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, S. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, P. Postorino, Optical properties of V1–xCrxO2 compounds under high pressure. Phys. Rev. B 77, 235111 (2008)

    Article  ADS  Google Scholar 

  49. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, M.A. Almessiere, M. Bououdina, N.H. Al-Hardan, High sensitivity extended gate effect transistor based on V2O5 nanorods. J. Mater. Sci. Mater. Electron. 28, 1364–1369 (2017)

    Article  Google Scholar 

  50. W.-J. Yan, M. Hu, J.-R. Liang, D.-F. Wang, Y.-L. Wei, Y.-X. Qin, Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods. Chin. Phys. B 25, 040702 (2016)

    Article  Google Scholar 

  51. S. Rajeshwari, J.S. Kumar, R.T. Rajendrakumar, N. Ponpandian, P. Thangadurai, Influence of Sn ion doping on the photocatalytic performance of V2O5 nanorods prepared by hydrothermal method. Mater. Res. Express 5, 025507 (2018)

    Article  ADS  Google Scholar 

  52. K. Sieradzka, D. Wojcieszak, D. Kaczmarek, J. Domaradzki, G. Kiriakidis, E. Aperathitis, V. Kambilafka, F. Placido, S. Song, Structural and optical properties of vanadium oxides prepared by microwave-assisted reactive magnetron sputtering. Opt. Appl. 41, 1–7 (2011)

    Google Scholar 

  53. R.K. Sharma, P. Kumar, G.B. Reddy, Synthesis of vanadium pentoxide (V2O5) nanobelts with high coverage using plasma assisted PVD approach. J. Alloys Compd. 638, 289–297 (2015)

    Article  Google Scholar 

  54. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sens. Actuators A 250, 250–257 (2016)

    Article  Google Scholar 

  55. K.Y. Pan, D.H. Wei, Optoelectronic and electrochemical properties of vanadium pentoxide nanowires synthesized by vapor-solid process. Nanomaterials 6, 140 (2016)

    Article  Google Scholar 

  56. A. Dey, M. Kumar Nayak, A.C. Mary Esther et al., Nanocolumnar crystalline vanadium oxide-molybdenum oxide antireflective smart thin films with superior nanomechanical properties. Sci. Rep. 6, 36811 (2016)

    Article  ADS  Google Scholar 

  57. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  ADS  Google Scholar 

  58. D. Vick, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, Self-shadowing and surface diffusion effects in obliquely deposited thin films. Thin Solid Films 339, 88–94 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Baltakesmez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakesmez, A., Aykaç, C. & Güzeldir, B. Phase transition and changing properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique, as a function of tungsten dopant. Appl. Phys. A 125, 441 (2019). https://doi.org/10.1007/s00339-019-2736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2736-0

Navigation