Skip to main content
Log in

Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

V2O5 thin films were deposited with different precursor concentrations of 0.01, 0.05, and 0.1 M on glass substrates by spray pyrolysis technique, then the optimized films were annealed in different ambients (air, oxygen, and vacuum). The results showed that by increasing the concentration, the films grew along the (001) direction with an orthorhombic structure. Field emission scanning electron microscopy showed that nanorods were formed when depositing 0.05 molar of VCl3. We conclude that with the precursor concentration, the surface nanostructure can be well-controlled. Annealing improved the crystallinity under all ambients, but the best crystallinity was achieved in vacuum. It was revealed that the as-deposited films had the highest transmission, whereas the films annealed in air had the lowest. When annealed in air, the optical band gap decreased from 2.45 to 2.32 eV. The sheet resistance, resistivity, mobility, conductivity, and carrier concentration were measured for all the prepared V2O5 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Beke, A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519, 1761–1771 (2011)

    Article  ADS  Google Scholar 

  2. A. Bouzidi, N. Benramdane, S. Bresson, C. Mathieu, R. Desfeux, M. El Marssi, X-ray and raman study of spray pyrolysed vanadium oxide thin films. Vib. Spectrosc. 57, 182–186 (2011)

    Article  Google Scholar 

  3. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001–043034 (2008)

    Article  ADS  Google Scholar 

  4. M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Electrochemical properties of V2O5 thin films deposited by spin coating. Mater. Sci. Eng. B 25, 42–50 (2007)

    Article  Google Scholar 

  5. G.J. Fang, Z.L. Liu, Y.Q. Wang, H.H. Liu, K.L. Yao, Orientated growth of V2O5 electrochromic thin films on transparent conductive glass by pulsed excimer laser ablation technique. J. Phys. D Appl. Phys. 33, 3018–3021 (2000)

    Article  ADS  Google Scholar 

  6. A.A. Akl, Thermal annealing effect on the crystallization and optical dispersion of sprayed V2O5 thin films. J. Phys. Chem. Solids 71, 223–229 (2010)

    Article  ADS  Google Scholar 

  7. V.I. Pârvulescu, S. Boghosian, V. Pârvulescu, S.M. Jung, P. Grange, Selective catalytic reduction of NO with NH3 over mesoporous V2O5–TiO2–SiO2 catalysts. J. Catal. 217, 172–185 (2003)

    Google Scholar 

  8. M. Abbasi, S.M. Rozati, R. Irani, S. Beke, Synthesis and gas sensors behavior of nanostructure V2O5 thin films prepared by spray pyrolysis method. Mater. Sci. Semicond. Process. 29, 132–138 (2015)

    Article  Google Scholar 

  9. S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9, 8158–8196 (2009)

    Article  Google Scholar 

  10. S.S. Kanu, R. Binions, Thin films for solar control applications. Proc. R. Soc. A 466, 19–44 (2010)

    Article  ADS  Google Scholar 

  11. F. Béteille, J. Livage, Optical switching in VO2 thin films. J. Sol Gel. Sci. Technol. 13, 915–921 (1998)

    Article  Google Scholar 

  12. Y. Wang, G. Cao, Li+-intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition. Electrochim. Acta 51, 4865–4872 (2006)

    Article  Google Scholar 

  13. D. Alamarguy, J.E. Castle, M. Liberatore, F. Decker, Distribution of intercalated lithium in V2O5 thin films determined by SIMS depth profiling. Surf. Interface Anal. 38, 847–850 (2006)

    Article  Google Scholar 

  14. T.J. Hanlon, J.A. Coath, M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films 436, 269–272 (2003)

    Article  ADS  Google Scholar 

  15. A. Rougier, A. Blyr, Electrochromic properties of vanadium tungsten oxide thin films grown by pulsed laser deposition. Electrochim. Acta 46, 1945–1950 (2001)

    Article  Google Scholar 

  16. C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Structural and gas-sensing properties of V2O5–MoO3 thin films for H2 detection. Sens. Actuators B 77, 346–351 (2001)

    Article  Google Scholar 

  17. A.A. Akl, Crystallization and electrical properties of V2O5 thin films prepared by RF sputtering. Appl. Surf. Sci. 253, 7094–7099 (2007)

    Article  ADS  Google Scholar 

  18. H. Poelman, H. Tomaszewski, D. Poelman, L. Fiermans, R. De Gryse, M.F. Reyniers, G.B. Marin, V2O5 thin films deposited by means of d.c. magnetron sputtering from ceramic V2O3 targets. Surf. Interface Anal. 34, 724–727 (2002)

    Article  Google Scholar 

  19. S. Guimond, J.M. Sturm, D. Goebke, Y. Romanyshyn, M. Naschitzki, H. Kuhlenbeck, H.J. Freund, Well-ordered V2O5 (001) thin films on Au (111): growth and thermal stability. J. Phys. Chem. 112, 11835–11846 (2008)

    Google Scholar 

  20. S. Beke, L. Kőrösi, S. Papp, L. Nánai, J.G. Kiss, V. Safarov, Nd:YAG laser synthesis of nanostructural V2O5 from vanadium oxide sols: morphological and structural characterizations. Appl. Surf. Sci. 254, 1363–1368 (2007)

    Article  ADS  Google Scholar 

  21. D. Barreca, L. Armelao, F. Caccavale, V. Di Noto, A. Gregori, G.A. Rizzi, E. Tondello, Highly oriented V2O5 nanocrystalline thin films by plasma-enhanced chemical vapor deposition. Chem. Mater. 12, 98–103 (2000)

    Article  Google Scholar 

  22. S. Beke, S. Giorgio, L. Kőrösi, L. Nánai, W. Marine, Structural and optical properties of pulsed laser deposited V2O5 thin films. Thin Solid Films 516, 4659–4664 (2008)

    Article  ADS  Google Scholar 

  23. Y. Iida, H. Takashima, Y. Kanno, Optical and electrical properties of V2O5 thin films fabricated by pulsed laser deposition. Jpn. J. Appl. Phys. 47, 633–636 (2008)

    Article  ADS  Google Scholar 

  24. S. Beke, L. Kőrösi, S. Papp, A. Oszkó, L. Nánai, XRD and XPS analysis of laser treated vanadium oxide thin films. Appl. Surf. Sci. 255, 9779–9782 (2009)

    Article  ADS  Google Scholar 

  25. S. Beke, L. Kőrösi, L. Nánai, F. Brandi, In-situ optical emission spectroscopy of laser-induced vanadium oxide plasma in vacuum. Vacuum 86, 2002–2004 (2012)

    Article  ADS  Google Scholar 

  26. R. Irani, S.M. Rozati, S. Beke, Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: effect of the substrate temperature. Mater. Chem. Phys. 139, 489–493 (2013)

    Article  Google Scholar 

  27. C.Q. Feng, S.Y. Wang, R. Zeng, Z.P. Guo, K. Konstantinov, H.K. Liu, Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources 184, 485–488 (2008)

    Article  ADS  Google Scholar 

  28. A. Ashour, N.Z. El-Sayed, Physical properties of V2O5 sprayed films. J. Optoelectron. Adv. Mater. 11, 251–256 (2009)

    Google Scholar 

  29. C.V. Ramana, B.S. Naidu, O.M. Hussain, R. Pinto, Low-temperature growth of vanadium pentoxide thin films produced by pulsed laser ablation. J. Phys. D Appl. Phys. 34, L35 (2001)

    Article  ADS  Google Scholar 

  30. L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  ADS  Google Scholar 

  31. C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Correlations between growth conditions, microstructure, and optical properties in pulsed-laser deposited V2O5 thin films. Chem. Mater. 17, 1213–1219 (2005)

    Article  Google Scholar 

  32. G.J. Fang, D. Li, B.L. Yao, Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films 418, 156–162 (2002)

    Article  ADS  Google Scholar 

  33. E.L. Wolf, M. Medikonda, Understanding the Nanotechnology Revolution, 1st edn. (Wiley-VCH, Weinheim, 2012)

    Book  Google Scholar 

  34. A.D. Raj, T. Pazhanivel, P.S. Kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Self-assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010)

    Article  ADS  Google Scholar 

  35. J. Woellenstein, J.A. Plaza, C. Cane, Y. Min, H. Boettner, H.L. Tuller, A novel single chip thin film metal oxide array. Sens. Actuator B 93, 350–355 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research department of University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Rozati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irani, R., Rozati, S.M. & Beke, S. Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique. Appl. Phys. A 124, 321 (2018). https://doi.org/10.1007/s00339-018-1744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1744-9

Navigation