Skip to main content
Log in

Change in the electronic and nonlinear optical properties of Fullerene through its incorporation with Sc-, Fe-, Cu-, and Zn transition metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electronic and nonlinear optical properties of transition metal (Sc, Fe, Cu, and Zn) substitutional doped C20 fullerenes are studied through DFT calculations. Replacement of carbon of C20 fullerene with a transition metal atom remarkably increases the hyperpolarizability (βo) of the system, compared to 0 au hyperpolarizability of pure C20 fullerene. The maximum βo is calculated for Sc–C19 (2224.5 au) followed by Fe–C19 (790.1 au), Cu–C19 (592.1 au), and Zn–C19 (564.6 au). The same order is found for the polarizability of the resulting systems. The polarizability and hyperpolarizabilities are found to decrease with increase in ionization potential of the doped transition metal. Molecular reactivity descriptors reveal that the iron-doped fullerene Fe–C19 is the softest system with the highest electrophilicity among all studied. The outcome of this study will be useful for promoting the possible use of the metal–fullerene systems as a new type of electronic nano-devices having good-performance nonlinear optical (NLO) properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Shabbir, T. Minami, H. Fukui, K. Yoneda, R. Kishi, Y. Shigeta, M. Nakano, J. Phys. Chem. A 116, 1417 (2012)

    Article  Google Scholar 

  2. M. Shabbir, S. Ito, M. Nakano, R. Kishi, K. Yoneda, Y. Kitagawa, M. Shkir, A. Irfan, A.R. Chaudhry, S. AlFaify, A. Kalam, Phys. Chem. Chem. Phys. 17, 5805 (2015)

    Article  Google Scholar 

  3. M. Shabbir, K. Fukuda, T. Minami, R. Kishi, Y. Shigeta, M. Nakano, Chem. Eur. J. 19, 1677 (2013)

    Article  Google Scholar 

  4. M. Shabbir, H.L. Xu, R.L. Zhong, Z.M. Su, A.G. Al-Sehemi, A. Irfan, J. Mater Chem. C 1(35), 5439 (2013)

    Article  Google Scholar 

  5. M. Shabbir, H. Xu, Y. Liao, Y. Kan, Z. Su, J. Am. Chem. Soc. 131, 11833 (2009)

    Article  Google Scholar 

  6. M. Niu, G. Yu, G. Yang, W. Chen, X. Zhao, X. Huang, Inorg. Chem. 53, 349 (2014)

    Article  Google Scholar 

  7. J. Iqbal, K. Ayub, J. Alloys. Compd. 687, 976 (2016)

    Article  Google Scholar 

  8. J. Iqbal, K. Ayub, RSC. Adv. 6, 94228 (2016)

    Article  Google Scholar 

  9. W. Chen, Z.R. Li, D. Wu, R.Y. Li, C.C. Sun, J. Phys. Chem. B 109, 601 (2005)

    Article  Google Scholar 

  10. W. Chen, Z.R. Li, D. Wu, Y. Li, R.Y. Li, C.C. Sun, J. Phys. Chem. A 109(12), 2920 (2005)

    Article  ADS  Google Scholar 

  11. W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, F.L. Gu, Y. Aoki, J. Am. Chem. Soc. 128, 1072 (2006)

    Article  Google Scholar 

  12. H.L. Xu, Z.R. Li, D. Wu, B.Q. Wang, Y. Li, F.L. Gu, Y. Aoki, J. Am. Chem. Soc. 129, 2967 (2007)

    Article  Google Scholar 

  13. F.F. Wang, Z.R. Li, D. Wu, B.Q. Wang, Y. Li, Z.J. Li, W. Chen, G.T. Yu, F.L. Gu, Y. Aoki, J. Phys. Chem. B 112, 1090 (2008)

    Article  Google Scholar 

  14. W. Chen, Z.R. Li, D. Wu, F.L. Gu, X.Y. Hao, B.Q. Wang, R.J. Li, C.C. Sun, J. Chem. Phys. 121, 10489 (2004)

    Article  ADS  Google Scholar 

  15. Z.J. Li, F.F. Wang, Z.R. Li, H.L. Xu, X.R. Huang, D. Wu, W. Chen, G.T. Yu, F.L. Gu, Y. Aoki, Phys. Chem. Chem. Phys. 11, 402 (2009)

    Article  Google Scholar 

  16. A.S. Rad, S.A. Aghouzi, N. Motaghedi, S. Maleki, M. Peyravi, Mol. Simulat. 42, 1519 (2016)  

    Article  Google Scholar 

  17. A.S. Rad, K. Ayub, Comput. Theor. Chem. 1138, 39 (2018)  

    Article  Google Scholar 

  18. M. Mirmotahari, E. Sani, A.S. Rad, M.A. Khalilzadeh, J. Biomol. Struct. Dyn. (2019). https://doi.org/10.1080/07391102.2018.1546233

    Article  Google Scholar 

  19. A.S. Rad, H. Pazoki, S. Mohseni, D. Zareyee, M. Peyravi, Mater. Chem. Phys. 182, 32 (2016)  

    Article  Google Scholar 

  20. A.S. Rad, J. Theor. Appl. Phys. 10, 307 (2016)  

    Article  ADS  Google Scholar 

  21. A.S. Rad, S.M. Aghaei, Curr. Appl. Phys. 18, 133 (2018)  

    Article  ADS  Google Scholar 

  22. A.S. Rad, J. Alloys. Compd. 682, 345 (2016)

    Article  Google Scholar 

  23. S. Gholami, A.S. Rad, A. Heydarinasab, M. Ardjmand, J. Alloys. Compd. 686, 662 (2016)

    Article  Google Scholar 

  24. A.S. Rad, Phys. E 83, 135 (2016)

    Article  Google Scholar 

  25. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B.V. Issendorff, Nature. 407, 60 (2000)

    Article  ADS  Google Scholar 

  26. Z. Wang, X. Ke, Z. Zhu, F. Zhu, M. Ruan, H. Chen, R. Huang, L. Zheng, Phys. Lett. A 280, 351 (2001)

    Article  ADS  Google Scholar 

  27. Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti, R. Sharma, Eur. Phys. J. B 31, 509 (2003)

    Article  ADS  Google Scholar 

  28. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, J. Clust. Sci. 22, 31 (2011)

    Article  Google Scholar 

  29. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, Curr. Appl. Phys. 10, 260 (2010)

    Article  ADS  Google Scholar 

  30. M.T. Baei, A. Soltani, P. Torabi, F. Hosseini, Monatsh. Chem. 145, 1401 (2014)

    Article  Google Scholar 

  31. A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, Diam. Relat. Mater. 77, 116 (2017)

    Article  ADS  Google Scholar 

  32. A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, M. Jahanshahi, Appl. Organomet. Chem. 32, 4070 (2018)

    Article  Google Scholar 

  33. S. Dheivamalar, L. Sugi, Spectrochim. Acta. A 151, 687 (2015)

    Article  Google Scholar 

  34. D. Paul, J. Deb, B. Bhattacharya, U. Sarkar, Int. J. Nanosci. 16, 1760026 (2017)

    Google Scholar 

  35. D. Paul, J. Deb, B. Bhattacharya, U. Sarkar, AIP Conf. Proc. 1832, 050107 (2017). https://doi.org/10.1063/1.4980340

    Article  Google Scholar 

  36. A.S. Rad, K. Ayub, Comput. Theor. Chem. 1121, 68 (2017)

    Article  Google Scholar 

  37. A.S. Rad, K. Ayub, Mater. Res. Bull. 97, 399 (2018)

    Article  Google Scholar 

  38. G09 software, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, C.T. Wallingford (2009)  

  39. J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)

    Article  Google Scholar 

  40. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  Google Scholar 

  41. T. Koopmans, Physica. 1, 104 (1933)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shokuhi Rad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, A.S., Ayub, K. Change in the electronic and nonlinear optical properties of Fullerene through its incorporation with Sc-, Fe-, Cu-, and Zn transition metals. Appl. Phys. A 125, 430 (2019). https://doi.org/10.1007/s00339-019-2721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2721-7

Navigation