Skip to main content

Advertisement

Log in

Engineering the band gap of Hf2CO2 MXene semiconductor by C/O doping

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The modulations of electronic band structure of Hf2CO2 MXene through substitution-doping approaches (two different substitution sites, i.e., C and O sites) are theoretically studied within the first-principles density functional theory. It is found that SiC-, GeC-, BNC-, and NFO-doped Hf2CO2 nanosheets remain semiconductor properties with a wide range of band gap, while NC/O-, BO-, PO-, and FO-doped Hf2CO2 nanosheets possess to degenerate semiconductor or metallic characters. The orbital contribution analysis indicates that the p states of dopants play an important role in modulating the electronic band structures of the doped Hf2CO2 nanosheets. Furthermore, negative solution energy and binding energy of the above doped systems indicate the feasibility of the doping technique. We hope that these results can provide a theoretical basis to engineer the band gap of Hf2CO2 MXene materials and even guide these materials design and optimization in the applications of electronics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  CAS  Google Scholar 

  2. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    Article  CAS  Google Scholar 

  3. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Transition Metal Carbides. ACS Nano 6, 1322–1331 (2012)

    Article  CAS  Google Scholar 

  4. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

    Article  CAS  Google Scholar 

  5. M.W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley, New York, 2013).

    Book  Google Scholar 

  6. Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K. Nam, X. Yang, A.I. Kolesnikov, P.R.C. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014)

    Article  CAS  Google Scholar 

  7. J. Hu, B. Xu, C. Ouyang, S.A. Yang, Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) mono layer as a promising anode material for Li ion batteries from first-principles calculations. J. Phys. Chem. C 118, 24274–24281 (2014)

    Article  CAS  Google Scholar 

  8. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012)

    Article  CAS  Google Scholar 

  9. D. Wang, Y. Gao, Y. Liu, D. Jin, Y. Gogotsi, X. Meng, F. Du, G. Chen, Y. Wei, First-principles calculations of Ti2N and Ti2NT2 (T = O, F, OH) monolayers as potential anode materials for lithium-ion batteries and beyond. J. Phys. Chem. C 121, 13025–13034 (2017)

    Article  CAS  Google Scholar 

  10. J. Luo, C. Wang, H. Wang, X. Hu, E. Matios, X. Lu, W. Zhang, X. Tao, W. Li, Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29, 1805946 (2019)

    Article  Google Scholar 

  11. J. Luo, X. Lu, E. Matios, C. Wang, H. Wang, Y. Zhang, X. Hu, W. Li, Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 20, 7700–7708 (2020)

    Article  CAS  Google Scholar 

  12. X. Guo, X. Zhang, S. Zhao, Q. Huang, J. Xue, High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 18, 228–233 (2016)

    Article  CAS  Google Scholar 

  13. L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang, L. Zheng, J. Zhang, Z. Chai et al., Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl. Mater. Interface 8, 16396–16403 (2016)

    Article  CAS  Google Scholar 

  14. Y.J. Zhang, Z.J. Zhou, J.H. Lan, C.C. Ge, Z.F. Chai, P.H. Zhang, W.Q. Shi, Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)

    Article  CAS  Google Scholar 

  15. A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May, Y. Gogotsi, M.W. Barsoum, A.T. Fafarman, Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016)

    Article  CAS  Google Scholar 

  16. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013)

    Article  CAS  Google Scholar 

  17. Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: A New Family of Promising Hydrogen Storage Medium. J. Phys. Chem. A 117, 14253–14260 (2013)

    Article  CAS  Google Scholar 

  18. M. Khazaei, M. Arai, T. Sasaki, C. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013)

    Article  CAS  Google Scholar 

  19. X. Zhang, Z. Ma, X. Zhao, Q. Tang, Z. Zhou, Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. J. Mater. Chem. A 3, 4960–4966 (2015)

    Article  CAS  Google Scholar 

  20. X. Zha, Q. Huang, J. He, H. He, J. Zhai, J.S. Francisco, S. Du, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016)

    Article  Google Scholar 

  21. X. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J.S. Francisco, K. Luo, S. Du, Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 8, 6110–6117 (2016)

    Article  CAS  Google Scholar 

  22. X. Zhang, X. Zhao, D. Wu, Y. Jing, Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale 7, 16020–16025 (2015)

    Article  CAS  Google Scholar 

  23. K. Luo, X. Zha, Y. Zhou, Z. Guo, C. Lin, Q. Huang, S. Zhou, R. Zhang, S. Du, First-principles study on the electrical and thermal properties of the semiconducting Sc-3(CN)F-2 MXene. RSC Adv. 8, 22452–22459 (2018)

    Article  CAS  Google Scholar 

  24. Y. Zhang, W. Xia, Y. Wu, P. Zhang, Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale 11, 3993–4000 (2019)

    Article  CAS  Google Scholar 

  25. R. Dornhaus, G. Nimtz, B. Schlicht, Narrow-Gap Semiconductors (Springer, Berlin, 2006).

    Google Scholar 

  26. K. Takahashi, A. Yoshikawa, A. Sandhu, Wide Bandgap Semiconductors (Springer, Berlin, 2007).

    Book  Google Scholar 

  27. Y. Lee, Y. Hwang, S.B. Cho, Y. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field. Phys. Chem. Chem. Phys. 16, 26273–26278 (2014)

    Article  CAS  Google Scholar 

  28. Y. Lee, S.B. Cho, Y. Chung, Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect. ACS Appl. Mater. Inter. 6, 14724–14728 (2014)

    Article  CAS  Google Scholar 

  29. J. Guo, Y. Sun, B. Liu, Q. Zhang, Q. Peng, Two-dimensional scandium-based carbides (MXene): band gap modulation and optical properties. J. Alloys Compd. 712, 752–759 (2017)

    Article  CAS  Google Scholar 

  30. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015)

    Article  CAS  Google Scholar 

  31. E. Balci, U.O. Akkus, S. Berber, Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C 5, 5956–5961 (2017)

    Article  CAS  Google Scholar 

  32. J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005)

    Article  Google Scholar 

  33. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  35. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875004, 11974055) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-IDRY-19-029). The authors also thank Prof. Peihong Zhang at University at Buffalo for his helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujuan Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, M., Wang, Z. et al. Engineering the band gap of Hf2CO2 MXene semiconductor by C/O doping. Journal of Materials Research 36, 1678–1685 (2021). https://doi.org/10.1557/s43578-021-00200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00200-x

Keywords

Navigation