Skip to main content

Advertisement

Log in

Structure, electrical and nonlinear optical properties of \(\hbox {M@C}_{20}\) (M = Li, Na, K, Be, Mg and Ca) nanoclusters

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The decoration of Li, Na, K, Be, Mg and Ca metal atoms on \(\hbox {C}_{20}\) fullerene was studied using the density functional theory (DFT) method. It was shown that the structure of the fullerene was intensely affected by the metal atom present. All metal atoms have exothermic adsorption on \(\hbox {C}_{20}\) fullerene, while Be has the highest value of adsorption energy, enthalpy and free energy. The presence of the metal atom also has a slight effect on \(E_\mathrm{g}\) while the lowest value of \(E_\mathrm{g}\) was obtained for \(\hbox {Ca@C}_{20}\). The calculations of polarizability and the first hyperpolarizability show that the metal atoms highly influence fullerenes. Among metal atoms, Ca atom had the highest effect and the other metal atoms led to an increase of the first hyperpolarizability to a value of approximately 42000 a.u. The time-dependent (TD)-DFT studies showed that \(\hbox {Ca@C}_{20}\) has the lowest excitation energies which is in agreement with the calculated first hyperpolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Geskin V M, Lambert C and Breda J L 2003 Am. Chem. Soc125 15651

    Article  CAS  Google Scholar 

  2. Sajan D, Joe H, Jayakumar V S and Zaleski J 2006 Mol. Struct785 43

    Article  CAS  Google Scholar 

  3. Reshak A H, Stys D, Auluck S and Kityk I V 2010 J. Phys. Chem. B 114 1815

    Article  CAS  Google Scholar 

  4. Solomon R V, Veerapandian P, Vedha S A and Venuvanalingam P 2012 J. Phys. Chem. A 116 4667

    Article  CAS  Google Scholar 

  5. Luo J, Haller M, Ma H, Liu S, Kim T D, Tian Y et al 2004 J. Phys. Chem. B 108 8523

    Article  CAS  Google Scholar 

  6. Chen W, Li Z R, Wu D, Li Y, Sun C C and Gu F L 2005 J. Am. Chem. Soc127 10977

    Article  CAS  Google Scholar 

  7. Wang W Y, Ma N N, Wang C H, Zhang M Y, Sun S L and Qiu Y Q 2014 J. Mol. Graphics Modell. 48 28

    Article  CAS  Google Scholar 

  8. Datta A, Mallajosyula S S and Pati S K 2007 Acc. Chem. Res40 213

    Article  CAS  Google Scholar 

  9. Datta A 2009 J. Phys. Chem. C 113 3339

    Article  CAS  Google Scholar 

  10. Nijamudheen A and Datta A 2010 J. Mol. Struct.: Theochem. 945 93

    Article  CAS  Google Scholar 

  11. Pratik S M, Nijamudheen A and Datta A 2016 Chem. Phys. Chem. 17 2373

    Article  CAS  Google Scholar 

  12. Jissy A K, Ashik U P M and Datta A 2011 J. Phys. Chem. C 115 12530

    Article  CAS  Google Scholar 

  13. Shakerzdeh E, Tahmasebi E and Shamlouei H R 2015 Synth. Met204 17

    Article  CAS  Google Scholar 

  14. Shamlouei H R, Nouri A, Mohammadi A and Dadkhah Tehrani A 2016 Phys. E 77 48

    Article  CAS  Google Scholar 

  15. Omidi M, Shamlouei H R and Noormohammadbeigi M 2017 J. Mol. Model. 23 82

    Article  Google Scholar 

  16. Raoof Toosi A, Shamlouei H R and Mohammadi Hesari A 2016 Chin. Phys. B 25 094220

    Article  Google Scholar 

  17. Mohammadi Hesari A, Shamlouei H R and Raoof Toosi A 2016 J. Mol. Model. 22 189

    Article  Google Scholar 

  18. Beigi M N, Shamlouei H R, Omidi M and Jalalvandi E 2017 J. Electron. Mater. 46 6347

    Article  CAS  Google Scholar 

  19. Tahmaszadeh F and Shamlouei H R 2018 Int. J. Nanoelectron. Mat. 11 1

    Google Scholar 

  20. Elim H I, Ouyang J, He J, Goh S H, Tang S H and Ji W 2003 Chem. Phys. Lett. 369 281

    Article  Google Scholar 

  21. Kost A R, Jensen J E, Loufty R O and Wither J C 2005 Appl. Phys. B  80 281

    Article  CAS  Google Scholar 

  22. Kost A, Tutt L W, Klein M B, Dougherty T K and Elias W E 1993 Opt. Lett. 18 334

    Article  CAS  Google Scholar 

  23. Kamanina N V 2002 Synth. Met. 127 121

    Article  CAS  Google Scholar 

  24. Banerjee D, Sahoo R, Debnath R, Pradhan B and Kundu T 2005 J. Mater. Res. 20 1113

    Article  CAS  Google Scholar 

  25. Henari F, Callaghan J, Stiel H, Blau W and Cardin D 1992 J. Chem. Phys. Lett199 144

    Article  CAS  Google Scholar 

  26. Tutt L W and Kost A 1992 Nature 356 225

    Article  CAS  Google Scholar 

  27. Yongguang C, Tingchao H, Haoshan H, Shuangmei Z and Haixia X 2009 Opt. Commun282 4271

    Article  Google Scholar 

  28. Larijani F A 2016 Chin. J. Phys. 54 870

    Article  CAS  Google Scholar 

  29. Devos A and Lannoo M 1998 Phys. Rev. B 58 8236

    Article  CAS  Google Scholar 

  30. Turker L 2003 J. Mol. Struct.: Theochem. 625 169

    Article  CAS  Google Scholar 

  31. Yi-Peng A, Chuan Yang L, Wang M S, Ma X G and Wang D H 2010 Curr. Appl. Phys10 260

    Article  Google Scholar 

  32. Noormohammadbeigi M and Shamlouei H R 2018 J. Inorg. Organomet. Polym. 28 110

    Article  CAS  Google Scholar 

  33. Frisch M J et al 2009 Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT

  34. Becke A D 1988 Phys. Rev. A38 3098

    Article  CAS  Google Scholar 

  35. Lee C, Yang W and Parr R G 1988 Phys. Rev. B37 785

    Article  CAS  Google Scholar 

  36. Boyle N M O, Tenderholt A L and Langner K M 2008 J. Comput. Chem. 29 839

    Article  Google Scholar 

  37. Yanai T, Tew D P and Hand N C 2004 Chem. Phys. Lett.  393 51

    Article  CAS  Google Scholar 

  38. Alparone A 2013 Chem. Phys. Lett563 88

    Article  CAS  Google Scholar 

  39. Yanai T, Hariison R J and Handy N C 2005 Mol. Phys. 103 413

    Article  CAS  Google Scholar 

  40. Peach M J G, Helgaker T, Saiek P, Keal T W, Lutnas O B, Tozer D J et al 2006 Phys. Chem. Chem. Phys8 558

    Article  CAS  Google Scholar 

  41. Buckingham A D 1967 Adv. Chem. Phys. 12 107

    CAS  Google Scholar 

  42. Baei M T 2013 Heteroat. Chem. 24 516

    Article  CAS  Google Scholar 

  43. Baei M T, Soltani A, Torabi P and Hosseini F 2014 Monatsh. Chem. 145 1401

    Article  CAS  Google Scholar 

  44. Zhang H and Balasubramanian K 1993 Mol. Phys79 72

    Article  Google Scholar 

  45. Adjizian J J, Vlandas A, Rio J, Charlier J C and Ewels C P 2016 Phil. Trans. R. Soc. A  374 20150323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, M., Shamlouei, H.R. Structure, electrical and nonlinear optical properties of \(\hbox {M@C}_{20}\) (M = Li, Na, K, Be, Mg and Ca) nanoclusters. Bull Mater Sci 41, 137 (2018). https://doi.org/10.1007/s12034-018-1674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1674-3

Keywords

Navigation