Skip to main content
Log in

Structure, dielectric, and optical properties of PbTi(1−x)(V0.50Fe0.50)xO3 perovskite ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline PbTi(1−x)(Fe0.50V0.50)xO3 (0 ≤ x ≤ 0.12) ceramics have been prepared using a modified sol–gel route via conventional sintering method. Rietveld refinement of all samples XRD data are carried out with tetragonal P4mm space group. Structural analysis is revealed to decrease the tetragonality (c/a) from 1.064 (for x = 0) to 1.039 (for x = 0.12) with increasing composition. An electronic structural study perceived that the hybridizations between Pb (6s)–O (2p)–Ti (3d) orbitals are weakened with increasing substitution. Average grain size is influenced by the substituent effectively. The phase-transition temperature is found to decrease with increasing composition. The impedance study confirms that the conductivity of the samples is increased as a function of substitution and temperature. Absorption spectra have revealed the decrease of bandgap with increasing substitution. Hence, transition V and Fe ions are played an important role in modifying the relative density, conductivity, and bandgap of the PbTiO3 ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.S. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4(1), 3–26 (2000)

    Article  Google Scholar 

  2. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (2004)

    Article  Google Scholar 

  3. G. Shirane, S. Hoshino, On the phase transition in lead titanate. J. Phys. Soc. Jpn. 6(4), 265–270 (1951)

    Article  ADS  Google Scholar 

  4. E.C. Subbarao, Studies on lead titanate ceramics containing niobium or tantalum. J. Am. Ceram. Soc. 43(3), 119–122 (1960)

    Article  Google Scholar 

  5. A.K. Yadav, A. Verma, B. Singh, D. Kumar, S. Kumar, V. Srihari, H.K. Poshwal, P. Kumar, S.-W. Liu, S. Biring, S. Sen, (Pb1−xBix)(Ti1−xMnx)O3: competing mechanism of tetragonal-cubic phase on A/B site modifications. J. Alloys Compd. 765, 278–286 (2018)

    Article  Google Scholar 

  6. A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1−xFex)O3. J. Alloys Compd. 701(Supplement C), 619–625 (2017)

    Article  Google Scholar 

  7. T.Y. Tien, W.G. Carlson, Effect of additives on properties of lead titanate. J. Am. Ceram. Soc. 45(12), 567–571 (1962)

    Article  Google Scholar 

  8. S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)

    Article  ADS  Google Scholar 

  9. N. Zhang, H. Yokota, A.M. Glazer, Z. Ren, D.A. Keen, D.S. Keeble, P.A. Thomas, Z.G. Ye, The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 5, 5231 (2014)

    Article  ADS  Google Scholar 

  10. A. Chandra, D. Pandey, P.S.R. Krishna, M. Ramanadham, Evidence for a new non-ferroelectric phase transition in (Pb1−xCax)TiO3 ceramics for 0.60 ≤ x ≤ 0.90. Ferroelectrics 324(1), 37–41 (2005)

    Article  Google Scholar 

  11. C.F.V. Raigoza, D. Garcia, J.A. Eiras, R.H.G.A. Kiminami, Optimization of parameters in the synthesis of 0.90Pb(Zn1/3Nb2/3)O3–0.10PbTiO3 (PZN-10PT) powders obtained by the mixed oxides method. Bol. Soc. Esp. Ceram. Vidrio 56(1), 13–18 (2017)

    Article  Google Scholar 

  12. E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Piezoelectric properties of <001> textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78(17), 2551–2553 (2001)

    Article  ADS  Google Scholar 

  13. H. Uršič, Zarnik, M. Kosec, Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) material for actuator applications. Smart Mater. Res. 2011, 6 (2011)

    Google Scholar 

  14. X. Long, Z.-G. Ye, New dielectric and ferroelectric solid solution of (1 − x)Ba(Mg1/3Nb2/3)O3−xPbTiO3 with morphotropic phase boundary. Chem. Mater. 19(6), 1285–1289 (2007)

    Article  Google Scholar 

  15. X. Long, Z. Ye, Relaxor behavior in Ba(Zn1/3Nb2/3)O3–PbTiO3 new solid solution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2595–2598 (2007)

    Article  Google Scholar 

  16. C. Correas, T. Hungría, A. Castro, Mechanosynthesis of the whole xBiFeO3−(1−x)PbTiO3 multiferroic system: structural characterization and study of phase transitions. J. Mater. Chem. 21(9), 3125–3132 (2011)

    Article  Google Scholar 

  17. X. Li, Z. Wang, Y. Liu, C. He, X. Long, A new ternary ferroelectric crystal of Pb(Y1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3. CrystEngComm 16(32), 7552–7557 (2014)

    Article  Google Scholar 

  18. P. Hu, J. Chen, J. Deng, X. Xing, Thermal expansion, ferroelectric and magnetic properties in (1 − x)PbTiO3−xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc. 132(6), 1925–1928 (2010)

    Article  Google Scholar 

  19. M.L. Calzada, L.D. Olmo, Piezoelectric behaviour of pure PbTiO3 ceramics. Ferroelectrics 123(1), 233–241 (1991)

    Article  Google Scholar 

  20. G. Sághi-Szabó, R.E. Cohen, H. Krakauer, First-principles study of piezoelectricity in PbTiO3. Phys. Rev. Lett. 80(19), 4321–4324 (1998)

    Article  ADS  Google Scholar 

  21. Y. Xu, 1—Introduction: Characteristics of Ferroelectrics, in Ferroelectric Materials and Their Applications, ed. by Y. Xu (Elsevier, Amsterdam, 1991), pp. 1–36

    Google Scholar 

  22. Z. Yang, X. Chao, R. Zhang, Y. Chang, Y. Chen, Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers. Mater. Sci. Eng. B 138(3), 277–283 (2007)

    Article  Google Scholar 

  23. A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1−x)LaxTi(1−x)AlxO3 ceramics. J. Appl. Phys. 123(12), 124102 (2018)

    Article  ADS  Google Scholar 

  24. Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, G. Han, Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett. 91(6), 063106 (2007)

    Article  ADS  Google Scholar 

  25. J. Carvajal, FULLPROF: a program for rietveld refinement and pattern matching analysis, abstracts of the satellite meeting on powder diffraction of the XV Congress of the IUCr, (1990)

  26. G. Shirane, R. Pepinsky, B.C. Frazer, X-ray and neutron diffraction study of ferroelectric PbTiO3. Acta Cryst. 9(2), 131–140 (1956)

    Article  Google Scholar 

  27. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  28. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  29. G. Burns, B.A. Scott, Lattice modes in ferroelectric perovskites: PbTiO3. Phys. Rev. B 7(7), 3088–3101 (1973)

    Article  ADS  Google Scholar 

  30. G. Burns, B.A. Scott, Raman studies of underdamped soft modes in PbTiO3. Phys. Rev. Lett. 25(3), 167–170 (1970)

    Article  ADS  Google Scholar 

  31. L.A. Bursill, B. Jiang, J.L. Peng, T.L. Ren, W.L. Zhong, P.L. Zhang, Hrtem analysis of nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature. Ferroelectrics 191(1), 281–286 (1997)

    Article  Google Scholar 

  32. S. Sen, Y. Zou, S.K. Ray, D.P. Robertson, P. Guptasarma, M. Gajdardziska-Josifovska, Structural complexities of PbTi0.5Fe0.5O3 nanocrystals revealed by HRTEM. Microsc. Microanal. 16(S2), 1720–1721 (2010)

    Article  ADS  Google Scholar 

  33. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  34. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 − x)Na0.5Bi0.5TiO3−xAgTaO3 ceramics. J. Appl. Phys. 125(5), 054101 (2019)

    Article  ADS  Google Scholar 

  35. D. Pang, Z. Yi, Ferroelectric, piezoelectric properties and thermal expansion of new Bi(Ni3/4W1/4)O3–PbTiO3 solid solutions. RSC Adv. 7(32), 19448–19456 (2017)

    Article  Google Scholar 

  36. A.K. Yadav, A.S. Kumar, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics. J. Mater. Sci. Mater. Electron. 28(14), 10730–10738 (2017)

    Article  Google Scholar 

  37. A. Tawfik, O.M. Hemeda, D.M. Hemeda, R. Shady, M. Barakat, Structural morphological and dielectric properties of Pb1−xNixTiO3 doped with Ni. Open J. Appl. Sci. 06(11), 18 (2016)

    Google Scholar 

  38. D. Wang, M. Cao, S. Zhang, Investigation of ternary system Pb(Sn, Ti)O3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Eur. Ceram. Soc. 32(2), 441–448 (2012)

    Article  Google Scholar 

  39. J.R. Macdonald, Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 223(1), 25–50 (1987)

    Article  MathSciNet  Google Scholar 

  40. J.R. Macdonald, Impedance spectroscopy: old problems and new developments. Electrochim. Acta 35(10), 1483–1492 (1990)

    Article  Google Scholar 

  41. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  42. A. Shukla, R.N.P. Choudhary, Impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Curr. Appl. Phys. 11(3), 414–422 (2011)

    Article  ADS  Google Scholar 

  43. S. Kumar, K.B.R. Varma, Dielectric relaxation in bismuth layer-structured BaBi4Ti4O15 ferroelectric ceramics. Curr. Appl. Phys. 11(2), 203–210 (2011)

    Article  ADS  Google Scholar 

  44. R.M. Hill, L.A. Dissado, Debye and non-Debye relaxation. J. Phys. C Solid State Phys. 18(19), 3829 (1985)

    Article  ADS  Google Scholar 

  45. A.K. Yadav, S.A. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and ferroelectric properties of perovskite Pb(1−x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv. 7(63), 39434–39442 (2017)

    Article  Google Scholar 

  46. S. Kumar, A.K. Yadav, S. Sen, Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase. J. Mater. Sci. Mater. Electron. 28(16), 12332–12341 (2017)

    Article  Google Scholar 

  47. S. Arrhenius, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Zeitschrift für Physikalische Chemie, 1889, pp 96

  48. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15(2), 627–637 (1966)

    Article  ADS  Google Scholar 

  49. T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceram. Int. 42(5), 6033–6038 (2016)

    Article  Google Scholar 

  50. W. Zhou, H. Deng, P. Yang, J. Chu, Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x ferroelectrics. Appl. Phys. Lett. 105(11), 111904 (2014)

    Article  ADS  Google Scholar 

  51. A.K. Anita, N. Yadav, S. Khatun, C.-M. Kumar, S. Tseng, S. Biring, Sen, size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J. Mater. Sci. Mater. Electron. 28(24), 19017–19024 (2017)

    Article  Google Scholar 

  52. G.Y. Gou, J.W. Bennett, H. Takenaka, A.M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−xNix)O3−x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B 83(20), 205115 (2011)

    Article  ADS  Google Scholar 

  53. Y. Liu, W. Wang, X. Xu, J.P.M. Veder, Z. Shao, Recent advances in anion-doped metal oxides for catalytic applications. J. Mater. Chem. A 7(13), 7280–7300 (2019)

    Article  Google Scholar 

  54. W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019)

    Article  Google Scholar 

  55. Y.-I. Kim, M.P. Woodward, Band gap modulation of Tantalum(V) perovskite semiconductors by anion control, Catalysts 9(2) (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Mr. A. K. Yadav acknowledges the financial support from the University Grants Commission (NFO-2015-17-OBC-UTT-28455). The authors express grateful thanks to the Indian Institute of Technology Indore, for funding the research and using Sophisticated Instrument Centre (SIC). Sunil Kumar acknowledges SERB for Early Career Research award (ECR/2017/0561). Sajal Biring sincerely thanks financial support from the Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003 and 106-2221-E-131-027). We are thankful to Dr. Pankaj Sagdeo for UV–Vis data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Verma, A., Kumar, S. et al. Structure, dielectric, and optical properties of PbTi(1−x)(V0.50Fe0.50)xO3 perovskite ceramics. Appl. Phys. A 125, 418 (2019). https://doi.org/10.1007/s00339-019-2713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2713-7

Navigation