Skip to main content

Advertisement

Log in

Organic WORM memory with carbon nanoparticle/epoxy active layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Following the “All With One (AW1)” technology proposed in our earlier work, the present study is focused on the production and the characterization of write once read many (WORM) memory devices with a carbon nanoparticle/epoxy resin nanocomposite, where the main advantage stands on the ease of production of the nanostructured phase. The results revealed that short 100-ns, low-voltage (5.0-V) electric pulses are enough to record a bit, and the bit one to bit zero current state ratio \(I_\mathrm{{ON}}/I_\mathrm{{OFF}}\) reaches 10\(^{7}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Hattenhauer, F.A.D. Radomski, C.A. Duarte, M.A. Mamo, Epoxy resin in organic WORM memories: From capsuling to the active layer. Org. Electron. 34, 57–66 (2016)

    Article  Google Scholar 

  2. M.A. Mamo, W.S. Machado, W.A.L.V. Otterlo, N.J. Coville, I.A. Hümmelgen, Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite. Org. Electron. 11, 1858–1863 (2010)

    Article  Google Scholar 

  3. W.S. Machado, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, The OFF to ON switching time and ON state consolidation in write-once-read-many-times memory devices based on doped and undoped carbon-sphere/polymer composites. Thin Solid Films 520, 4427–4431 (2012)

    Article  ADS  Google Scholar 

  4. B. Pradhan, S.K. Batabyal, A.J. Pal, Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J. Phys. Chem. B 110, 8274–8277 (2006)

    Article  Google Scholar 

  5. Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Nonvolatile memory devices based on electrical conductance tuning in poly(N-vinylcarbazole)-graphene composites. Org. Electron. 13, 1289–1295 (2012)

    Article  Google Scholar 

  6. J.A. Ávila-Niño, W.S. Machado, A.O. Sustaita, E.S. Cardenas, M. Reyes-Reyes, R.L. Sandoval, I.A. Hümmelgen, Organic low voltage rewritable memory device based on PEDOT: PSS/f-MWCNTs thin film. Org. Electron. 13, 2582–2588 (2012)

    Article  Google Scholar 

  7. M.A. Mamo, A.O. Sustaita, Z.N. Tetana, N.J. Coville, I.A. Hümmelgen, Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices. Nanotechnology 24, 1–7 (2013)

    Article  Google Scholar 

  8. G. Liu, Q.D. Ling, E.T. Kang, K.G. Neoh, D.J. Liaw, F.C. Chang, C.X. Zhu, D.S.H. Chan, Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. J. Appl. Phys. 102, 024502 (2007)

    Article  ADS  Google Scholar 

  9. C. Wu, F. Li, T. Guo, T.W. Kim, Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers. Org. Electron. 13, 178–183 (2012)

    Article  Google Scholar 

  10. B. Zhang, D. Li, Y. Wu, F. Fan, Y. Chen, A donor-acceptor structured conjugated copolymer for flexible memory device. Org. Electron. 49, 269–277 (2017)

    Article  Google Scholar 

  11. R. Shi, X. Wang, Z. Wang, L. Cao, M. Song, X. Huang, J. Liu, and W. Huang, Fully solution-processed transparent nonvolatile and volatile multifunctional memory devices from conductive polymer and graphene oxide. Adv. Electr. Mat. 3, 170013 (2017)

    Google Scholar 

  12. D. Chaudhary, S. Munjal, N. Khare, V.D. Vankar, Bipolar resistive switching and nonvolatile memory effect in poly (3-hexylthiophene) carbon nanotube composite films. Carbon 130, 553–558 (2018)

    Article  Google Scholar 

  13. Y. Sun, D. Wena, X. Baib, Nonvolatile ternary resistive switching memory devices based on the polymer composites containing zinc oxide nanoparticles. Phys. Chem. Chem. Phys. 20, 5771–5579 (2018)

    Article  Google Scholar 

  14. N. Padma, C.A. Betty, S. Samanta, A. Nigam, Tunable switching characteristics of low operating voltage organic bistable memory devices based on gold nanoparticles and copper phthalocyanine thin films. J. Phys. Chem. C 121, 5768–5778 (2017)

    Article  Google Scholar 

  15. J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967–5971 (1999)

    Article  Google Scholar 

  16. X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R Rep. 49, 89–112 (2005)

    Article  Google Scholar 

  17. Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68, 1644–1648 (2008)

    Article  Google Scholar 

  18. J. Gao, D. Yan, B. Yuan, H. Huang, Z. Li, Large-scale fabrication and electrical properties of an anisotropic conductive polymer composite utilizing preferable location of carbon nanotubes in a polymer blend. Compos. Sci. Technol. 70, 1973–1979 (2010)

    Article  Google Scholar 

  19. T. Kim, A. Tannenbaum, R. Tannenbaum, Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon 70, 54–61 (2011)

    Article  Google Scholar 

  20. B.W. Steinert, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET carbon nanotube composite films. Polymer 50, 898–904 (2009)

    Article  Google Scholar 

  21. I. Hattenhauer, P.P. Tambosi, C.A. Duarte, L.A.F. Coelho, A. Ramos, S.H. Pezzin, Impact of electric field application during curing on epoxy-carbon nanotube nanocomposite electrical conductivity. J. Inorg. Organomet. Polym. Mater. 25, 627–634 (2014)

    Article  Google Scholar 

  22. Y.Z. Jin, C. Gao, W.K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.Y. Lee, S. Acquah, H. Kroto, D.R.M. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon N. Y. 43, 1944–1953 (2005)

    Article  Google Scholar 

  23. H. Cao, J. Fu, Y. Liu, S. Chen, Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation. Colloids Surf. A 537, 294–302 (2018)

    Article  Google Scholar 

  24. X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle Soot as a template for a transparent robust superamphiphobic coating. Science 335, 67 (2012)

    Article  ADS  Google Scholar 

  25. C.-J. Liang, J.-D. Liao, A.-J. Li, C. Chen, H.-Y. Lin, X.-J. Wang, Y.-H. Xu, Relationship between wettabilities and chemical compositions of candle soots. Fuel 128, 422 (2014)

    Article  Google Scholar 

  26. L. Shen, W. Wang, H. Ding, Q. Guo, Flame soot stably deposited on silicone coatings possess superhydrophobic surface. Appl. Surf. Sci. 284, 651 (2013)

    Article  ADS  Google Scholar 

  27. K. Seo, M. Kim, D.H. Kim, Candle-based process for creating a stable superhydrophobic surface. Carbon 68, 583 (2014)

    Article  Google Scholar 

  28. K.S. Prasad, M.C. Chuang, J.A.A. Ho, Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot. Talanta 88, 445 (2012)

    Article  Google Scholar 

  29. B. Zhang, D. Wang, B. Yu, F. Zhou, W. Liu, Candle soot as a supercapacitor electrode material. RSC Adv. 4, 2586 (2014)

    Article  Google Scholar 

  30. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  ADS  Google Scholar 

  31. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    Article  ADS  Google Scholar 

  32. G.A. Rance, D.H. Marsh, S.J. Bourne, T.J. Reade, A.N. Khlobystov, van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACSNano 4, 4920–4928 (2010)

    Google Scholar 

  33. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Comm. 3(732), 1–8 (2012)

    Google Scholar 

  34. U. Celano, Metrology and Physical Mechanisms in New Generation Ionic Devices (Springer, New York, 2016)

    Book  Google Scholar 

  35. L. Ma, S. Pyo, J. Ouyang, Q. Xu, Y. Yang, Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett. 82, 1419 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. I. A. Hümmelgen (Dept. of Physics, UFPR) for the use of laboratory facilities. We thank CAPES (Brazilian agency) for funding and CME—Centro de Microscopia Eletrônica da UFPR for the transmission electron microscopy and Raman scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso de Araujo Duarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toppel, A., Duarte, C.d.A. & Mamo, M.A. Organic WORM memory with carbon nanoparticle/epoxy active layer. Appl. Phys. A 125, 2 (2019). https://doi.org/10.1007/s00339-018-2292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2292-z

Navigation