Skip to main content
Log in

Resistive Switching Properties in Copper Oxide–Graphene Oxide Nanocomposite-Based Devices for Flexible Electronic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, a CuO-GO nanocomposite-based device was fabricated which exhibited excellent free bipolar resistive switching (RS) phenomena. The device showed considerable switching performance such as low operating voltages, high OFF/ON resistance ratio (~103), uniformity, good endurance, and long retention (~104 s). The RS actions of the device were explained using an electric field-induced creation and annihilation of metal filaments in the CuO-GO layer. Owing to the growing demand for flexible electronics, the mechanical strength of the fabricated device has been realized for the different bending radii of the device. The proposed device showed potential towards flexible high-density data storage devices. Also, the devices showed a good resemblance with biological synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Tsai, J. Chen, C. Huang, H. Lo, W. Ke, Y. Chu, and W. Wu, A high-entropy-oxides-based memristor: outstanding resistive switching performance and mechanisms in atomic structural evolution. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302979.

    Article  Google Scholar 

  2. S. Liu, Y. Cheng, F. Han, S. Fan, and Y. Zhang, Multilevel resistive switching memristor based on silk fibroin/graphene oxide with image reconstruction functionality. Chem. Eng. J. 471, 144678 (2023). https://doi.org/10.1016/j.cej.2023.144678.

    Article  CAS  Google Scholar 

  3. P.K. Sarkar, S. Bhattacharjee, A. Barman, A. Kanjilal, and A. Roy, Multilevel programming in Cu/NiOy /NiOx /Pt unipolar resistive switching devices. Nanotechnology 27, 435701 (2016). https://doi.org/10.1088/0957-4484/27/43/435701.

    Article  CAS  Google Scholar 

  4. P.K. Sarkar, M. Prajapat, A. Barman, S. Bhattacharjee, and A. Roy, Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices. J. Mater. Sci. 51, 4411 (2016). https://doi.org/10.1007/s10853-016-9753-6.

    Article  CAS  Google Scholar 

  5. D. Ielmini and R. Waser eds., Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

    Google Scholar 

  6. M. Lanza, H.-S.P. Wong, E. Pop, D. Ielmini, D. Strukov, B.C. Regan, L. Larcher, M.A. Villena, J.J. Yang, L. Goux, A. Belmonte, Y. Yang, F.M. Puglisi, J. Kang, B. Magyari-Köpe, E. Yalon, A. Kenyon, M. Buckwell, A. Mehonic, A. Shluger, H. Li, T.-H. Hou, B. Hudec, D. Akinwande, R. Ge, S. Ambrogio, J.B. Roldan, E. Miranda, J. Suñe, K.L. Pey, X. Wu, N. Raghavan, E. Wu, W.D. Lu, G. Navarro, W. Zhang, H. Wu, R. Li, A. Holleitner, U. Wurstbauer, M.C. Lemme, M. Liu, S. Long, Q. Liu, H. Lv, A. Padovani, P. Pavan, I. Valov, X. Jing, T. Han, K. Zhu, S. Chen, F. Hui, and Y. Shi, Recommended methods to study resistive switching devices. Adv. Electron. Mater. 5, 1800143 (2019). https://doi.org/10.1002/aelm.201800143.

    Article  CAS  Google Scholar 

  7. S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv, T. Liu, Q. Wang, and X. Zhang, Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 42, 317 (2021). https://doi.org/10.1016/j.ensm.2021.07.007.

    Article  Google Scholar 

  8. S. Bhattacharjee, P.K. Sarkar, N. Roy, and A. Roy, Improvement of reliability of polymer nanocomposite based transparent memory device by oxygen vacancy rich ZnO nanorods. Microelectron. Eng. 164, 53 (2016). https://doi.org/10.1016/j.mee.2016.04.027.

    Article  CAS  Google Scholar 

  9. Y.R. Park, H. Cho, and G. Wang, Multiple switching modes of NiOx Memristors for memory-driven multifunctional device applications. ACS Appl. Electron. Mater. 4, 3739 (2022). https://doi.org/10.1021/acsaelm.2c00780.

    Article  CAS  Google Scholar 

  10. D. Carta, I. Salaoru, A. Khiat, A. Regoutz, C. Mitterbauer, N.M. Harrison, and T. Prodromakis, Investigation of the switching mechanism in TiO2-based RRAM: a two-dimensional EDX approach. ACS Appl. Mater. Interfaces 8, 19605 (2016). https://doi.org/10.1021/acsami.6b04919.

    Article  CAS  Google Scholar 

  11. A. Prakash, D. Deleruyelle, J. Song, M. Bocquet, and H. Hwang, Resistance controllability and variability improvement in a TaOx-based resistive memory for multilevel storage application. Appl. Phys. Lett. 106, 233104 (2015). https://doi.org/10.1063/1.4922446.

    Article  CAS  Google Scholar 

  12. Y. Yang, W. Lü, Y. Yao, J. Sun, C. Gu, L. Gu, Y. Wang, X. Duan, and R. Yu, In situ TEM observation of resistance switching in titanate based device. Sci. Rep. 4, 3890 (2015). https://doi.org/10.1038/srep03890.

    Article  Google Scholar 

  13. J. Di, J. Du, Z. Lin, and S. Liu, J. Ouyang, J. Chang, Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 3, 293 (2021). https://doi.org/10.1002/inf2.12162.

    Article  CAS  Google Scholar 

  14. Y. Sun, Y. Wang, Q. Yuan, and B. Li, Bio-inspired artificial heterosynapse based on carbon nanotubes memtransistor with dynamically tunable analog switching behavior. Mater. Today Nano. 24, 100398 (2023). https://doi.org/10.1016/j.mtnano.2023.100398.

    Article  CAS  Google Scholar 

  15. D.-Y. Cho, K. Kim, K.-S. Lee, M. Lübben, S. Chen, and I. Valov, Chemical influence of carbon interface layers in metal/oxide resistive switches. ACS Appl. Mater. Interfaces 15, 18528 (2023). https://doi.org/10.1021/acsami.3c00920.

    Article  CAS  Google Scholar 

  16. S. Fatima, X. Bin, M.A. Mohammad, D. Akinwande, and S. Rizwan, Graphene and MXene based free-standing carbon Memristors for flexible 2D memory applications. Adv. Electron. Mater. 8, 2100549 (2022). https://doi.org/10.1002/aelm.202100549.

    Article  CAS  Google Scholar 

  17. Q.-F. Ou, L. Wang, and B.-S. Xiong, Modeling electrical switching behavior of carbon resistive memory. IEEE Access 8, 8735 (2020). https://doi.org/10.1109/ACCESS.2020.2964601.

    Article  Google Scholar 

  18. A.H. Jaafar, L. Meng, T. Zhang, D. Guo, D. Newbrook, W. Zhang, G. Reid, C.H. de Groot, P.N. Bartlett, and R. Huang, Flexible memristor devices using hybrid polymer/electrodeposited GeSbTe nanoscale thin films. ACS Appl. Nano Mater. 5, 17711 (2022). https://doi.org/10.1021/acsanm.2c03639.

    Article  CAS  Google Scholar 

  19. J. Ren, H. Liang, J. Li, Y.C. Li, W. Mi, L. Zhou, Z. Sun, S. Xue, G. Cai, and J.S. Zhao, Polyelectrolyte bilayer-based transparent and flexible memristor for emulating synapses. ACS Appl. Mater. Interfaces 14, 14541 (2022). https://doi.org/10.1021/acsami.1c24331.

    Article  CAS  Google Scholar 

  20. S. Bhattacharjee, U. Das, P.K. Sarkar, and A. Roy, Stable charge retention in graphene-MoS2 assemblies for resistive switching effect in ultra-thin super-flexible organic memory devices. Org. Electron. 58, 145 (2018). https://doi.org/10.1016/j.orgel.2018.03.039.

    Article  CAS  Google Scholar 

  21. G. Khurana, N. Kumar, J.F. Scott, R.S. Katiyar, Graphene Oxide-Based Memristor, in: A.P. James (Ed.), Memristor Memristive Neural Netw., InTech, (2018). https://doi.org/10.5772/intechopen.69752

    Chapter  Google Scholar 

  22. S.-I. Oh, J.R. Rani, S.-M. Hong, and J.-H. Jang, Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid. Nanoscale 9, 15314 (2017). https://doi.org/10.1039/C7NR01840A.

    Article  CAS  Google Scholar 

  23. G. Anoop, V. Panwar, T.Y. Kim, and J.Y. Jo, Resistive switching in ZnO nanorods/graphene oxide hybrid multilayer structures. Adv. Electron. Mater. 3, 1600418 (2017). https://doi.org/10.1002/aelm.201600418.

    Article  CAS  Google Scholar 

  24. Z. Yin, Z. Zeng, J. Liu, Q. He, P. Chen, and H. Zhang, Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small 9, 727 (2013). https://doi.org/10.1002/smll.201201940.

    Article  CAS  Google Scholar 

  25. K.K. Gogoi and A. Chowdhury, Organic–inorganic nanohybrids for low-powered resistive memory applications. J. Phys. Conf. Ser. 1706, 012010 (2020). https://doi.org/10.1088/1742-6596/1706/1/012010.

    Article  CAS  Google Scholar 

  26. T. Chen, S. Yang, J. Wang, W. Chen, L. Liu, Y. Wang, S. Cheng, and X. Zhao, Flexible artificial memristive synapse constructed from solution-processed MgO–graphene oxide quantum dot hybrid films. Adv. Electron. Mater. 7, 2000882 (2021). https://doi.org/10.1002/aelm.202000882.

    Article  CAS  Google Scholar 

  27. Y. Wang, Q. Liu, H. Lü, S. Long, W. Wang, Y. Li, S. Zhang, W. Lian, J. Yang, and M. Liu, Improving the electrical performance of resistive switching memory using doping technology. Chin. Sci. Bull. 57, 1235 (2012). https://doi.org/10.1007/s11434-011-4930-0.

    Article  CAS  Google Scholar 

  28. E.A.A. León Pérez, P.V. Guenery, O. Abouzaid, K. Ayadi, S. Brottet, J. Moeyaert, S. Labau, T. Baron, N. Blanchard, N. Baboux, L. Militaru, and A., Souifi, Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line. Solid-State Electron. 143, 20 (2018). https://doi.org/10.1016/j.sse.2017.11.011.

    Article  CAS  Google Scholar 

  29. D. Zhou, F. Chen, S. Han, W. Hu, Z. Zang, Z. Hu, S. Li, and X. Tang, Resistive switching characteristics of AgInZnS nanoparticles. Ceram. Int. 44, S152 (2018). https://doi.org/10.1016/j.ceramint.2018.08.126.

    Article  CAS  Google Scholar 

  30. H. Cui, J. Li, and H. Yuan, Bending effect on the resistive switching behavior of a NiO/TiO2 p–n heterojunction. RSC Adv. 8, 19861 (2018). https://doi.org/10.1039/C8RA01180J.

    Article  CAS  Google Scholar 

  31. S. Dugu, S.P. Pavunny, T.B. Limbu, B.R. Weiner, G. Morell, and R.S. Katiyar, A graphene integrated highly transparent resistive switching memory device. APL Mater. 6, 058503 (2018). https://doi.org/10.1063/1.5021099.

    Article  CAS  Google Scholar 

  32. Y. Bao, Z. Ren, H. Li, and K. Huang, Flexible nonvolatile resistive switching memory devices based on Bi2 Te3 nanosheets films. J. Phys. Appl. Phys. 52, 075103 (2019). https://doi.org/10.1088/1361-6463/aaf4c7.

    Article  CAS  Google Scholar 

  33. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143.

    Article  CAS  Google Scholar 

  34. K. Zhang, J.M. Suh, T.H. Lee, J.H. Cha, J.-W. Choi, H.W. Jang, R.S. Varma, and M. Shokouhimehr, Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence 6, 6 (2019). https://doi.org/10.1186/s40580-019-0176-3.

    Article  Google Scholar 

  35. R. Ahmadi, R.F.N. Fatahi, P. Sangpour, M. Bagheri, and T. Rahimi, Evaluation of antibacterial behavior of in situ grown CuO-GO nanocomposites. Mater. Today Commun. 28, 102642 (2021). https://doi.org/10.1016/j.mtcomm.2021.102642.

    Article  CAS  Google Scholar 

  36. H. Wang, J.-Z. Xu, J.-J. Zhu, and H.-Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244, 88–94 (2002). https://doi.org/10.1016/S0022-0248(02)01571-3.

    Article  CAS  Google Scholar 

  37. A.S. Sokolov, Y.-R. Jeon, S. Kim, B. Ku, and C. Choi, Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Mater. 11, 5 (2019). https://doi.org/10.1038/s41427-018-0105-7.

    Article  CAS  Google Scholar 

  38. A. Siddik, P.K. Haldar, T. Paul, U. Das, A. Barman, A. Roy, and P.K. Sarkar, Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale 13, 8864 (2021). https://doi.org/10.1039/D0NR08214G.

    Article  CAS  Google Scholar 

  39. F.-Y. Yuan, N. Deng, C.-C. Shih, Y.-T. Tseng, T.-C. Chang, K.-C. Chang, M.-H. Wang, W.-C. Chen, H.-X. Zheng, H. Wu, H. Qian, and S.M. Sze, Conduction mechanism and improved endurance in HfO2-based RRAM with Nitridation treatment. Nanoscale Res. Lett. 12, 574 (2017). https://doi.org/10.1186/s11671-017-2330-3.

    Article  CAS  Google Scholar 

  40. V.K. Nagareddy, M.D. Barnes, F. Zipoli, K.T. Lai, A.M. Alexeev, M.F. Craciun, and C.D. Wright, Multilevel ultrafast flexible nanoscale nonvolatile hybrid graphene oxide-titanium oxide memories. ACS Nano 11, 3010 (2017). https://doi.org/10.1021/acsnano.6b08668.

    Article  CAS  Google Scholar 

  41. A. Siddik, P.K. Haldar, P. Garu, S. Bhattacharjee, U. Das, A. Barman, A. Roy, and P.K. Sarkar, Enhancement of data storage capability in a bilayer oxide-based memristor for wearable electronic applications. J. Phys. Appl. Phys. 53, 295103 (2020). https://doi.org/10.1088/1361-6463/ab81d3.

    Article  CAS  Google Scholar 

  42. R. Singh, R. Kumar, A. Kumar, D. Kumar, and M. Kumar, Enhanced resistive switching effect in Ag nanoparticles embedded in graphene oxide thin film. J. Electron. Mater. 49, 4872 (2020). https://doi.org/10.1007/s11664-020-08207-6.

    Article  CAS  Google Scholar 

  43. Q. Lu, F. Sun, L. Liu, L. Li, Y. Wang, M. Hao, Z. Wang, S. Wang, and T. Zhang, Biological receptor-inspired flexible artificial synapse based on ionic dynamics. Microsyst. Nanoeng. 6, 84 (2020). https://doi.org/10.1038/s41378-020-00189-z.

    Article  CAS  Google Scholar 

  44. W. Xiong, L.Q. Zhu, C. Ye, Z.Y. Ren, F. Yu, H. Xiao, Z. Xu, Y. Zhou, H. Zhou, and H. Lu, Flexible poly(vinyl alcohol)–graphene oxide hybrid nanocomposite based cognitive Memristor with Pavlovian-conditioned reflex activities. Adv. Electron. Mater. 6, 1901402 (2020). https://doi.org/10.1002/aelm.201901402.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the respective universities for providing the necessary research facilities. The authors would also like to acknowledge Prof. Asim Roy, Department of Physics, NIT Silchar for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Kumar Haldar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 650 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, N., Siddik, A., Sarkar, P.K. et al. Resistive Switching Properties in Copper Oxide–Graphene Oxide Nanocomposite-Based Devices for Flexible Electronic Applications. J. Electron. Mater. 53, 432–440 (2024). https://doi.org/10.1007/s11664-023-10767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10767-2

Keywords

Navigation