Skip to main content
Log in

Simulation and experimental investigations of thermal degradation of polystyrene under femtosecond laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the underlying mechanisms of femtosecond laser ablation of atactic polystyrene with a molecular weight of 10,000 g/mol are elucidated by large-scale molecular dynamics simulations, with an emphasis on the mechanisms of thermal degradation of polystyrene. In addition, experimental investigations of thermal degradation of polystyrene chips formed in femtosecond laser ablation, as well as pristine polystyrene, are conducted under a heating environment at 500 °C with Py-GC/MS analysis. Simulation results indicate that chain entanglement is predominant to facilitate thermal degradation of polystyrene chain, which is closely accompanied with single-chain excitation. The main degradation mechanisms of polystyrene revealed by simulations include β-scission of carbon backbone, dissociation of pendant group, breaking of π bond of pendant group and evaporation of individual atoms, which qualitatively agree well with experimental results. It is also found that the laser energy has a significant influence on the degradation of polystyrene under femtosecond laser ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Zhang, B.S. Cui, L. Zhou, Y.P. Yuan, High Power Laser Part. Beams. 7, 151 (1995)

    Google Scholar 

  2. K.K. Mishra, R.K. Kardekar, R. Singh, H.C. Pant, Pramana-J. Phys. 59, 113 (2002)

    Article  ADS  Google Scholar 

  3. B. Wei, S.J. Wang, H.G. Song, H.Y. Liu, J. Li, N. Liu, Petrol. Sci. 6, 306 (2009)

    Article  Google Scholar 

  4. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Nature. 412, 798 (2001)

    Article  ADS  Google Scholar 

  5. D.W. Hill, E. Castillo, K.C. Chen, Fusion Sci. Technol. 45, 113 (2004)

    Article  Google Scholar 

  6. K. Yin, C. Wang, X.R. Dong, Appl. Phys. A-Mater. 122, 764 (2016)

    Article  ADS  Google Scholar 

  7. N. Maharjan, W. Zhaou, Y. Zhou, Y.C. Guan, Appl. Phys. A-Mater. 124, 519 (2018)

    Article  ADS  Google Scholar 

  8. H. Homma, H. Kodota, H. Hosokawa, Fusion. Sci. Technol. 59, 27 (2011)

    Article  Google Scholar 

  9. K. Nagai, H. Yang, T. Norimatsu, Nucl. Fusion. 49, 1 (2009)

    Article  Google Scholar 

  10. A. Miotello, P.M. Ossi, in Springer Ser. Mat. Sci. (Berlin, 2010), p. 19

  11. L. Jiang, H.L. Tsai, in Proceedings of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal (Stillwater, 2003)

  12. Y. Wang, X. Xu, L. Zhang, Appl. Phys. A 92, 849 (2008)

    Article  ADS  Google Scholar 

  13. D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  14. S. Sonntag, C.T. Paredes, J. Roth, H.R. Trebin, Appl. Phys. A. 104, 559 (2011)

    Article  ADS  Google Scholar 

  15. A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B. 78, 045437 (2008)

    Article  ADS  Google Scholar 

  16. B.J. Holland, J.N. Hay, Polymer. 42, 6775 (2001)

    Article  Google Scholar 

  17. I.C. Mcneill, L. Memetea, W.J. Cole, Polym. Degrad. Stab. 49, 181 (1995)

    Article  Google Scholar 

  18. J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim, K.O. Yoo, Polym. Degrad. Stab. 67, 535 (2000)

    Article  Google Scholar 

  19. M.R. Nyden, T.R. Coley, S. Mumby, Polym. Eng. Sci. 37, 1496 (1997)

    Article  Google Scholar 

  20. S.J. Stuart, J.A. Harrison, A.B. Tutein, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  21. Y.H. Huang, C.W. Song, J.J. Zhang, Sci. Chin. Phys. Mech. 58, 037002 (2015)

    Google Scholar 

  22. Y.H. Huang, C.W. Song, J.J. Zhang, J. Appl. Polym. Sci. 132, 42713 (2015)

    Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  24. A. Stukowski, Model. Simul. Mater. Sci. 18, 015012 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Science Challenge Program, China (Grant nos. TZ2008006-0201-02 and TZ2008006-0205-02) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

YH and JZ conceived the idea and designed the investigations. JZ and MW performed the molecular dynamics simulations. MW and CS designed the laser machining experiment, carried out the sample measurement and the data analysis. TS and LJ supervised the whole investigations. YH, MW and JZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun-jie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Data availability

All data are fully available without restriction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Yh., Wu, Mn., Song, Cw. et al. Simulation and experimental investigations of thermal degradation of polystyrene under femtosecond laser ablation. Appl. Phys. A 124, 797 (2018). https://doi.org/10.1007/s00339-018-2215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2215-z

Navigation